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ABSTRACT 

The success of gas reactors depends upon the safety and quality of the coated 
particle fuel. The fuel performance modeling code PARFUME simulates the 
mechanical, thermal and physico-chemical behavior of fuel particles during 
irradiation. This report documents the theory and material properties behind 
various capabilities of the code, which include: 1) various options for calculating 
CO production and fission product gas release, 2) an analytical solution for 
stresses in the coating layers that accounts for irradiation-induced creep and 
swelling of the pyrocarbon layers, 3) a thermal model that calculates a time-
dependent temperature profile through a pebble bed sphere or a prismatic block 
core, as well as through the layers of each analyzed particle, 4) simulation of 
multi-dimensional particle behavior associated with cracking in the IPyC layer, 
partial debonding of the IPyC from the SiC, particle asphericity, and kernel 
migration (or amoeba effect), 5) two independent methods for determining 
particle failure probabilities, 6) a model for calculating release-to-birth ratios of 
gaseous fission products that accounts for particle failures and uranium 
contamination in the fuel matrix, and 7) the evaluation of an accident condition, 
where a particle experiences a sudden change in temperature following a period 
of normal irradiation. The accident condition entails diffusion of fission products 
through the particle coating layers and through the fuel matrix to the coolant 
boundary. This document represents the first revision of the PARFUME Theory 
and Model Basis Report. This revision updates the modeling and material 
properties that have since been added to the code. This includes a new cylindrical 
modeling geometry, release-to-birth ratios (R/B), and CO production models.  
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1. INTRODUCTION 
PARFUME, the “PARticle FUel ModEl,” is being developed as an advanced gas-cooled reactor fuel 

performance modeling and analysis code. This report presents the theory used to develop the code, 
including theoretical descriptions of numerical and analytical models. 

The coating layers of a fuel particle, which surround the fuel kernel and buffer, consist of an inner 
pyrolytic carbon (IPyC) layer, a silicon carbide (SiC) layer, and an outer pyrolytic carbon (OPyC) layer. 
These layers act as a pressure vessel for fission product gases as well as a barrier to the migration of other 
fission products. The quality of the fuel can be characterized by how well the number of failures of the 
particles during reactor operation is minimized. Therefore, the PARFUME code has been developed to 
determine the failure probability of a population of fuel particles, accounting for all viable mechanisms that 
can lead to particle failure. The code accounts for these calculated particle failures in determining the 
diffusion of fission products from the fuel through the particle coating layers, and through the fuel matrix 
to the coolant boundary.  

Coated particle fuel exhibits statistical variations in physical dimensions and material properties from 
particle to particle due to the nature of its fabrication process. Its behavior is also inherently 
multidimensional, further complicating development of the model. The objective in developing PARFUME 
is to physically describe both the mechanical and physico-chemical behavior of the fuel particle under 
irradiation, while capturing the statistical nature of the fuel. Several mechanisms have been identified that 
can potentially lead to particle failure, including cracking of the IPyC during irradiation, debonding of the 
IPyC from the SiC layer during irradiation, buildup of internal fission gas pressure, kernel/SiC interaction 
resulting from the amoeba effect, and thinning of the SiC layer due to fission product/SiC interactions. This 
report describes the theory behind the current capabilities of the code that are used ultimately to determine 
fuel particle performance. 

This document represents the first revision of the PARFUME Theory and Model Basis Report.  

1.1 Code Description 

1.1.1 Basic Fuel Particle Behavior 

A typical TRISO-coated particle is shown in Figure 1-1. Several physical phenomena influence the 
behavior of the particles, including fission gas production and irradiation effects. For example, fission gas 
pressure builds up in the kernel and buffer regions, while the IPyC, SiC, and OPyC act as structural layers 
to retain this pressure. The basic behavior modeled in PARFUME is shown schematically in Figure 1-2. 
The IPyC and OPyC layers both shrink and creep due to irradiation of the particle, while the SiC response 
is essentially limited to elastic behavior. The pressure generally increases as irradiation of the particle 
progresses, thereby contributing to a tensile hoop stress in the SiC layer. Countering the effect of the 
pressure load is the shrinkage of the IPyC during irradiation, which pulls inward on the SiC. Likewise, 
shrinkage of the OPyC causes it to push inward on the SiC. Failure of the particle is expected to occur if 
the stress in the SiC layer reaches the fracture strength of the SiC. Failure of the SiC results in an 
instantaneous release of elastic energy that should be sufficient to cause simultaneous failure of the 
pyrocarbon layers. These effects are described using material, thermal, and physico-chemical models. 
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Figure 1-1. Typical TRISO-coated fuel particle geometry. 

 

 
Figure 1-2. Behavior of coating layers in fuel particles. 

1.1.2 Basic Fuel Element Behavior 

The fuel particles, described in Section 1.1.1, are embedded in a spherical, cylindrical, or plate-type 
graphite matrix; collectively, the fuel particles and matrix are referred to as a fuel element. A fuel element 
is subject to a temperature distribution that results from the heat generated in the fuel particles and 
conditions at the element boundaries. A typical prismatic core fuel element is shown in Figure 1-3. The 
prismatic core consists of a graphite moderator with coolant channels and fuel compacts containing 
thousands of randomly distributed fuel particles. 
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Figure 1-3. Typical element geometry (prismatic core). 

1.1.3 General Solution Procedure 

The general solution procedure used by PARFUME consists of the basic processes depicted in the 
flow chart of Figure 1-4. A general description of each process is given below, while detailed descriptions 
are provided in the Sections identified in Figure 1-4. 

1.1.3.1 Compute Fuel Element “Macro” Temperature Profile 

Once the fuel element geometry and temperature boundary conditions are identified, the general heat 
conduction equation, represented by Equation (1-1), is used to compute the macro temperature 
distribution throughout the fuel element. The volumetric heat generation rate consists of the total heat 
generation rate of all the particles. 

• 	 1‐1 	
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Figure 1-4. PARFUME calculation flow chart. 
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1.1.3.2 Compute Fuel Particle “Micro” Temperature Profile 

Once the macro temperatures for the fuel element are determined, the general heat conduction 
equation is used to compute the micro temperature profile (using a quasi-steady state assumption). 
Specifically, the term on the left-hand side of Equation (1-1) (time rate of change of temperature) is 
assumed to be zero, resulting in Poisson’s equation. Therefore, two boundary conditions are required, i.e., 
the surface temperature of the particle surface and the spatial temperature gradient at the geometric line of 
symmetry. The particle surface temperature is obtained from the “macro” temperature distribution 
computed from Equation (1-1), while the spatial temperature gradient at the line of symmetry is set equal 
to zero. The micro temperature profile accounts for all deformations in the kernel, buffer, and coating 
layers of the particle as well as the potential for development of a gap between the buffer and the IPyC. 

1.1.3.3 Compute Particle Stress Distribution 

Once a particle temperature profile is determined, the particle stress distribution is calculated to 
evaluate whether or not the particle fails. Currently, stress distribution calculations are limited to the 
buffer, IPyC, SiC, and OPyC though the effect of kernel swelling is included. Strain contributions from 
several sources are included. 

The system of equations used to compute the stress distribution in a spherical particle include 
constitutive relationships (describing elastic, irradiation-induced, and thermal strain), strain-displacement 
equations, and the equilibrium stress equation. The two component strain equations (i.e., constitutive 
relationships) take into account elastic, irradiation-induced creep, irradiation-induced swelling, and 
thermal strain. The radial strain-rate equation, consisting of four strain-rate terms, is shown in Equation 
(1-2). Note that the pressure contribution to strain as the result of fission gases and CO is accounted for in 
the displacement and stress relationships presented in Section 4. 

2 2 	 1‐2 	

Table 1-1 summarizes the strain contributions associated with each fuel particle structure. Because 
creep and swelling in the SiC layer are small relative to that of PyC and because of uncertainty in these 
properties for SiC, the SiC strains do not currently include contributions from creep or swelling. The fuel 
particle kernel is not considered to deform structurally, though a model is included in PARFUME to 
predict kernel volumetric changes over time. 

The stress state in a fuel particle is dependent on the internal gas pressure that exists during either 
normal reactor operation or an accident condition. Gas pressures are calculated according to the Redlich- 
Kwong equation of state and account for the generation of CO and the release of noble fission product 
gases. 

Table 1-1. Fuel Particle Strain Contributions 

Fuel Particle 
Component 

Elastic 
Strain 

Creep 
Strain 

Swelling 
Strain 

Thermal 
Strain 

Kernel  No  No  Yes  No 

Buffer  Yes  Yes  Yes  Yes 

IPyC  Yes  Yes  Yes  Yes 

SiC  Yes  No  No  Yes 

OPyC  Yes  Yes  Yes  Yes 

 



 

 6

1.1.3.4 Compute Failure Probability 

Once stresses have been determined, they are used in conjunction with Weibull statistics to determine 
particle failure probabilities in the fuel performance model. Assuming that the fuel particle failures follow 
a Weibull statistical distribution, the failure probability (for example of the SiC layer) is computed by 
inserting the calculated stress into Equation (1-3), where the characteristic strength (o) and Weibull 
modulus (m) are determined from experimental data. 

1
	

	 1‐3 	

1.1.3.5 Compute Fission Product Diffusion 

In the fission product diffusion calculations, PARFUME estimates fission product gas release due to 
both recoil and diffusion. It also incorporates the release of fission product gases from failed particles and 
from uranium contamination in the fuel matrix material.  

Once the fission product generation is determined, then the fission product transport calculations are 
performed. The simulation of fission product transport via diffusion from the fuel through the particle 
coating layers to the surrounding fuel element graphite matrix, and finally to the coolant boundary is 
accomplished using the following fundamental transport equation of Equation (1-4), where the flux is 
driven by fission product concentration gradients and temperature gradients as shown in Equation (1-5). 

• 		 1‐4 		

			 1‐5 	

Similar to the temperature profile analyses, “micro” and “macro” diffusion analyses are performed. 
The micro analysis is based on a model having five different materials (kernel, buffer, IPyC, SiC, and 
OPyC). The macro solution is based on a model having two materials, the graphite containing fuel 
particles and the surrounding graphite without fuel particles. 

Results from all of the diffusion analyses are integrated over time to produce a total fission product 
release from the fuel element. This is done for each of the fission products under consideration. 

1.2 Quality Assurance 
A Software Quality Assurance Plan will be developed and implemented to assure that the final 

software application will satisfy quality requirements. 

1.3 Document Organization 
Section 2 of this report describes the various reactor geometries that are treated in the code. Section 3 

describes the finite difference thermal models that are used to calculate temperature distributions in the 
fuel matrix and the quasi-steady state models used to calculate temperature distributions through the fuel 
particles. Section 4 presents the analytical solution that is used to calculate stresses and displacements in 
the coating layers of a fuel particle and the various failure mechanisms that are considered in the code. 
Section 5 presents the statistical method that is used to estimate stresses in particles that undergo 
multidimensional behavior and describes algorithms that are used to evaluate particle failure due to the 
various failure mechanisms. It also presents methods used to determine particle failure probabilities, 
which include the Monte Carlo method, a full integration numerical method, and a fast integration 
method. Finally, it explains how these failure probability determinations are linked to the fission product 
diffusion calculations. Section 6 describes the fission product diffusion models used to calculate diffusion 
through particle coating layers and through the fuel matrix. Section 7 presents material properties that are 
used in the code for the thermal, mechanical, and diffusion models. 
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2. GEOMETRIES 
The basic fuel particle geometry, described in Section 1.1.1, consists of a kernel of UO2 or UCO 

surrounded by a buffer and three structural layers (IPyC, SiC, and OPyC). The particles are embedded in 
a spherical, cylindrical, or plate-type graphite matrix. Collectively, the fuel particles and matrix are 
referred to as a fuel element. Note that the spherical graphite matrix containing fuel particles is called a 
“pebble”. 

Some definitions: 

 Fuel particle: kernel + buffer + IPyC + SiC + OPyC 

 Fuel matrix: graphite + embedded fuel particles 

 Fuel element: fuel matrix + surrounding (un-fueled graphite shell) 

 Fuel elements represent the “macro” level 

 Fuel particles represent the “micro” level 

2.1 Configurations 
Within PARFUME, four different “macro” fuel element geometries (i.e., plane, prismatic, spherical, 

and cylindrical) may be simulated in one dimension as indicated in Figure 2-1. Each macroscopic 
geometry is modeled by averaging spherical fuel particles, void regions (i.e., coolant channels), and the 
graphite matrix. This modeling technique is necessary in order to capture the physical behavior of the fuel 
elements while eliminating the complexities (i.e., computational requirements) of modeling the detailed 
composition of the fuel element. 

2.1.1 Plane Configuration 

A plane geometry option is provided to allow simulation of plate-type fuel. It is assumed that the 
plate will consist of a center fueled region bounded on both sides by a non-fueled region. The centerline 
of the plate therefore represents a line of symmetry for both heat and mass transfer. Although plate-type 
fuel has become unpopular over the years, some reactors such as the Advanced Test Reactor, continue to 
use plate-type fuel. Therefore, the plane geometry option is included in PARFUME for completeness. 

2.1.2 Prismatic Configuration 

A prismatic geometry option is provided to allow simulation of a unit cell from a prismatic reactor 
assembly. As an approximation, an appropriate fraction of six fuel compacts represent an equivalent 
fueled region in the form of a ring. The outer edge of that ring is symmetric relative to both heat and mass 
transfer. An un-fueled region representing the graphite communicates with the fueled region on the inside 
edge and the coolant channel on the outside edge. Figure 2-2 depicts the basic geometry used to develop 
the prismatic fuel element geometry and the transformed geometry. 
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Figure 2-1. PARFUME “macro” geometries. 

 

 
Figure 2-2. PRISMATIC “macro” geometry. 

2.1.3 Spherical Configuration 

A spherical geometry option is provided to allow simulation of a single sphere from a pebble bed 
reactor. The center of the sphere represents a line of symmetry relative to heat and mass transfer. An un-
fueled region at the outer portion of the sphere communicates with the fueled region on one surface and 
the coolant on the other surface. 
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2.1.4 Cylindrical Configuration 

A cylindrical geometry option is provided to allow simulation of a cylindrical fuel compact. The 
center of the cylinder represents a line of symmetry relative to heat and mass transfer. An un-fueled 
region at the outer portion of the cylinder communicates with the fueled region on one surface and the 
coolant on the other surface. 

2.2 Meshing 
The computational mesh represents an important step in the modeling and simulation process; in fact, 

the accuracy of the results is influenced by the mesh and associated boundary conditions. PARFUME 
requires generation of two 1-D meshes for heat and mass transfer analyses: the fuel particle “micro” mesh 
and the fuel element “macro” mesh. An example fuel particle “micro” mesh is presented in Figure 2-3. 

 

Figure 2-3. Thermal model “micro” mesh. 

The code currently provides automatic meshing for all analyzed fuel particles. This entails placing 
nodes on the inner and outer surface of each layer followed by the division of the layer into elements that 
are nominally 5 m wide. (Obviously, element widths will vary because the material layers will not 
normally be even increments of 5 m.) All interior nodes are then assumed to lie at the midpoint of each 
element.  

The fuel element “macro” mesh provides the user with more flexibility with respect to specifying the 
number of nodes. Referring to Figure 2-4, a line of symmetry relative to both heat and mass transfer exists 
in each geometry. Node 1 is always placed on that line of symmetry. Each geometry is then divided into 
intervals consistent with the number of nodes specified by the user. The last node always aligns with a 
boundary that, for thermal calculations, may have either a surface temperature specification or a 
convective surface specification. In diffusion calculations, this boundary has a surface concentration 
specification. 
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Figure 2-4. PRISMATIC “macro” mesh. 
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3. THERMAL MODELS 
The PARFUME thermal model for the fuel elements is based on a finite difference heat conduction 

approach with internal heat generation capabilities. It is used to calculate temperatures that are required 
for determining thermal response of individual fuel particles. Fuel particle results feed a number of 
temperature-dependent models including calculations for internal pressures, fission product release, and 
stresses in the coating layers. Temperatures from the fuel element model are also used to evaluate 
migration of the kernel toward the SiC layer in the direction of the global temperature gradient (the 
amoeba effect). 

Thermal modeling in PARFUME begins with calculation of a temperature profile through a pebble 
bed sphere, a prismatic block, or a planar geometry, depending on the reactor type specified by the user. 
The temperature profile is based on a number of other user inputs including the fuel element geometry, 
the number of fuel particles within the element, burnup specifications for the irradiation of interest, and 
the fuel element boundary temperature (i.e., the surface temperature for a pebble bed sphere or the coolant 
channel surface temperature for a prismatic block). Time-dependent burnup and/or boundary temperature 
specifications are allowed. The boundary temperature can be provided by the user or can be read from 
results of a reactor system analysis, for example a neutronic or thermal-hydraulic analysis, or 
experimental data. The fuel element profiles account for material property dependence on temperature 
and/or fluence as appropriate. 

The resulting time-dependent fuel element temperature profiles, or the “macro” gradients, are then 
used to calculate time-dependent fuel particle temperature profiles, or “micro” gradients, for each particle 
analyzed. Each micro gradient is based on a particle surface temperature, which is derived from the macro 
gradients consistent with the statistically determined particle positions. Because fuel particles are very 
small, the micro gradients are calculated using a quasi-steady state approach (i.e., time rate of temperature 
change within the particle is approximated as zero). However, material property dependencies on 
temperature, pressure, and/or fluence are treated as appropriate. 

The capability to predict the potential development of a gap between the buffer and the IPyC is an 
important feature of the thermal model because such a gap can significantly affect the micro temperature 
distribution within the particle (i.e., micro temperature gradients). Accordingly, the thermal model 
simulates all of the major factors in gap development including the net effects of kernel swelling; 
shrinkage and creep in the buffer, IPyC, and OPyC layers; and the associated kernel/buffer contact 
pressure. Furthermore, the model accounts for changes in gap conductivity with changes in particle 
geometry and gap gas composition, pressure, and temperature.  

3.1 Macro Temperatures 

3.1.1 Finite Difference Solution 

One-dimensional, second order temperature solutions are currently implemented for plane, prismatic, 
spherical and cylindrical geometries, which enables simulation of plate fuel, prismatic reactors, pebble 
bed reactors and cylindrical compacts, respectively. Heat conduction equations for these geometries are 
given by: 

	 	 3‐1 	

	 	 3‐2 	

and 

	 	 3‐3 	
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Equations (3-1) through (3-3) can be re-written as fully-implicit (backward) difference equations in 
tri-diagonal form for any interior node “i” as shown in Figure 3-1. 

 

Figure 3-1. Finite difference notation used in the “macro” thermal model. 

3.1.1.1 For Plane Geometry 

Equation (3-1) can be written in difference form as: 

∆

∆
∆ 	

∆

∆
∆ 	 3‐4 	

Expanding Equation (3-4) for node “i” yields: 

∆

∆
	 ∆ ∆ ∆ ∆ ∆ 	 3‐5 	

After simplifying and expanding all temperature terms, Equation (3-5) becomes: 

∆

∆

∆

∆
	 ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
	 3‐6 	

Finally, unknown temperatures at the new time step (denoted by “n”) can be equated to known 
values. The resulting equation, which is now in tri-diagonal form compatible with PARFUME, is given 
by: 

∆ ∆
∆
∆ ∆ ∆ ∆ ∆

	

∆ ∆
∆

∆

∆
	 3‐7 	

3.1.1.2 For Prismatic/Cylindrical Geometry 

∆

∆
∆ 	

∆

∆
∆ 	 3‐8 	

∆

∆
	 ∆ ∆ ∆ ∆ ∆ 	 3‐9 	

∆
∆

∆
∆

∆
2 ∆ ∆

	

∆ ∆ ∆ ∆ ∆ ∆
	 3‐10 	
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2 ∆ ∆
∆
∆ 2 ∆ ∆ 2 ∆ ∆

	

∆ ∆
∆

∆

∆
	 3‐11 	

3.1.1.3 For Spherical Geometry 

Equations (3-4) through (3-7) can be re-cast in spherical geometry as: 

∆

∆
∆ 	

∆

∆
∆ 	 3‐12 	

∆

∆
	 ∆ ∆ ∆ ∆ ∆ 		 3‐13 	

∆
∆

∆
∆

∆
2 ∆ ∆

	

∆ ∆ ∆ ∆ ∆ ∆
	 3‐14 	

2 ∆ ∆
∆
∆ 2 ∆ ∆ 2 ∆ ∆

	

∆ ∆
∆

∆

∆
	 3‐15 	

Based on the notation shown in Figure 3-2, Equation (3-15) and Fourier’s law (for spherical 
coordinates) can be used to determine the temperature distribution within the fuel matrix, given the input 
for the temperature of the exterior surface of the fuel element. 

 

 

Figure 3-2. Pebble bed matrix used in the “macro” thermal model. 
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3.1.2 Macro Temperature Initialization 

The fuel matrix temperature can be initialized by specifying a constant temperature or a temperature 
distribution. A constant temperature would be specified if, for example, there is interest in analyzing 
particles undergoing post irradiation heating tests in a furnace operating at a constant temperature. The 
temperature distribution approach would be used if the user desires to manually input various 
temperatures at discrete locations within the matrix or if a temperature data profile is available from either 
experimental data or a systems level code calculation. Note that a file extension “.abq” is required by 
PARFUME if experimental or "systems level" temperature data are provided. 

3.2 Micro Temperature 
Temperatures within the TRISO-coated fuel particle are calculated based on a time-dependent 

exterior surface (OPyC) temperature and a quasi-steady-state approach. The exterior surface temperature 
is derived from the macro temperature solution for the particle position of interest. The quasi steady-state 
approach was adopted as an explicit first-order approximation to minimize calculation time. At this point, 
a more refined transient temperature solution does not appear to be needed. The temperature solution at 
the particle centerline and at the interface of each particle layer was developed assuming: 

 Spherical symmetry (i.e., no particle defects or failures) 

 Particle materials are isotropic 

 Particle material thermal properties are dependent on temperature only 

 The gap between the buffer and the IPyC, if it develops, can be treated as a conducting medium like 
all other material layers 

 The contact resistance between particle layers is negligible 

 Internal (volumetric) heat generation, if any, exists only in the kernel layer 

The general conduction equation in spherical coordinates with an internal heat source as applicable to 
this model is given by: 

	 3‐16 	

The assumptions of spherical symmetry and quasi steady-state allow simplification of Equation (3-
16) to read: 

0 	 3‐17 	

The solution of Equation (3-17) is given by Carslaw and Jaeger1 as: 

	 3‐18 	

Where: 

R = outer radius of the sphere (m) 

TR =  temperature (K) at the radius R 

Equation (3-18) can be applied to calculate any temperature (T) at any radius in the kernel. The 
calculation of temperatures on the outer surface of the kernel, and all other radii beyond the kernel, rely 
on the quasi steady-state assumption that implies: 

	 3‐19 	
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where: 

  = internal (volumetric) heat generation in the kernel layer (W/m3) 

Vk  = kernel volume (m3) 

Qk  = heat flow through the kernel layer (W) 

Qb  = heat flow through the buffer layer (W) 

Qgap = heat flow (W) through the buffer/IPyC gap (if it develops) 

Qi  = heat flow through the IPyC layer (W) 

Qs  = heat flow through the SiC layer (W) 

Qo  = heat flow through the OPyC layer (W) 

Based on the notation shown in Figure 3-3, Equation (3-19) and Fourier’s law (for spherical 
coordinates) can be used to determine the temperature at the SiC/OPyC interface, given the input for the 
temperature of the exterior surface of the TRISO-coated fuel particle. Specifically, 

	 3‐20 	

	 	 3‐21 	

 

Figure 3-3. Fuel particle notation used in the “micro” thermal model. 

Note that in instances where computational nodes are placed at the interface of each fuel particle layer 
(i.e., Figure 3-3), with no interior layer nodes, Equation (3-21) reduces to: 

	 3‐22 	

where: 

rso  = radius at the outer edge of the SiC layer 

roo  = radius at the outer edge of the OPyC layer 

ko  = conductivity of the OPyC layer 
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Tso  = temperature at the outer edge of the SiC layer 

Too  = temperature at the outer edge of the OPyC layer 

Equation (3-21) permits the direct (explicit) calculation for the temperature at the outer edge of the 
SiC layer. Equations similar to those given in (3-20) and (3-21) can be solved sequentially to allow 
explicit calculation of temperatures at the outer edge of the IPyC layer (Tio), at the outer edge of the 
buffer/IPyC gap, if one develops, at the outer edge of the buffer layer (Tbo), and at the outer edge of the 
kernel layer (Tko). Given those results, the temperature at the kernel centerline (Tki) can be calculated with 
use of Equation (3-18) given by: 

	 3‐23 	

where: 

kk  = conductivity of the kernel layer 

rko  = radius at the outer edge of the kernel layer 

This approach is used to calculate fuel particle temperatures of interest using “old time” values for 
conductivity. The resulting temperatures are then used to update conductivities and refined temperatures 
are calculated. This process is repeated until temperatures converge. 

It should be noted that the thermal conductivity of the buffer-to-IPyC gap, if one develops, is 
calculated based on gap temperature, pressure, and gas composition. Temperature, pressure, and gas 
composition are calculated in the code as functions of time. Correlations used to calculate the gap 
conductivity were based on coding extracted from the MATPRO Library.2 

An example of results from the thermal model are shown in Figure 3-4, where kernel centerline 
temperatures were calculated as functions of particle power and burnup. In this case, fuel particles with a 
diameter of 780 m were assumed to contain fuel kernels with a diameter of 350 m. A volume average 
irradiation temperature of 1250 °C was also assumed. This effectively sets the temperature on the outer 
surface of each particle. The increase in kernel centerline temperatures as shown was due primarily to 
increases in the size of the gap between the buffer and the IPyC as a result of buffer shrinkage with 
increasing fast fluence and power being generated in the particle. At high particle powers that might be 
expected in very accelerated irradiations, the model predicts that the kernel centerline temperature can be 
as much as 200 °C higher even though the average temperature is 1250 °C. 

 

Figure 3-4. Kernel centerline temperatures as a function of particle power and burnup.  
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4. STRUCTURAL MODELS 
A key element of the PARFUME program is a closed form solution that calculates stresses and 

displacements in the coating layers of a one-dimensional (symmetrical) spherical particle.3,4 This solution 
accounts for the irradiation-induced creep and swelling in the pyrocarbon layers in addition to the elastic 
behavior of the three layers of a TRISO-coated particle. To treat situations where the particle temperature 
varies throughout irradiation, the solution allows for time-varying temperatures and material properties 
and includes the effect of differential expansion among the layers.4 

4.1 Background 
Early models of coated fuel particles used iterative numerical procedures to include the effects of 

pyrocarbon creep and swelling in determining stresses in the coating layers.5,6 Iterative procedures, 
though, are cumbersome to apply when treating statistical variations in Monte Carlo sampling of large 
particle populations. Bongartz simplified the stress analysis with a closed-form solution based on the 
assumption of a rigid SiC layer, which enhanced the speed of Monte Carlo calculations7. Miller and 
Bennett subsequently derived a closed-form solution for a three-layer particle that allows for elastic 
deformation in the SiC layer3 and is well suited for Monte Carlo simulations. 

The solution of Miller and Bennett includes stresses that result from irradiation-induced creep and 
swelling of the PyC layers, internal pressure due to fission gas release, external ambient pressure, and 
elastic behavior of all three coating layers. As originally formulated, it solved for stresses at a point in 
time in a single step that starts at the beginning of irradiation. Though this makes for a very efficient 
solution, it is subject to a number of limitations. It does not allow material properties, such as the elastic 
moduli of the coating layers, to change with time (or fluence). Nor does it address situations where the 
irradiation temperature changes with time. A changing temperature significantly affects the stress 
evolution over time, and induces differential thermal expansion stresses in the layers. A further limitation 
is the simplifying assumption that Poisson’s ratio in creep for the pyrocarbons is 0.5. The stresses and 
displacements in the coating layers are sensitive to this parameter, and experimental evidence suggests 
that the actual value could start at 0.5 but decrease suddenly with irradiation.8 It is desirable, therefore, to 
allow this parameter to assume any realistic value that could change with time. 

An updated solution4, as described below, removes all of the limitations described above. 
Additionally, the solution is presented in a manner that would enable its application to a particle having 
any number of coating layers, not just the three layers of a TRISO-coated particle. The basic approach 
used is to resolve the solution into time increments, using stresses calculated at the end of an increment as 
initial conditions for the following increment. The solution remains closed-form, and is used in 
PARFUME to calculate stresses and displacements in TRISO-coated fuel particles. Applying the solution 
incrementally through irradiation allows the material properties and irradiation temperature to change 
with time. The solution allows Poisson’s ratio in creep for the pyrocarbon layers to be set to any realistic 
value that can change with time. With these capabilities, it has been demonstrated to perform efficiently 
in particle failure probability determinations. 

4.2 Stress Distribution Theory and Derivation 

4.2.1 Governing Equations and Solution 

As in Reference 3, stress-strain relationships for the two components (radial and tangential) of strain 
in the spherical geometry of a TRISO particle, including Poisson effects, are as follows (see 
Nomenclature for definitions): 

2 2 				 4‐1 	
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1 1 	 4‐2 	

 

The four terms on the right-hand side of Equations (4-1) and Equation (4-2) represent the strains 
modeled in PARFUME for the pyrocarbon layers: 

 The first term represents elastic strain caused by radial and tangential stress components. 

 The second term represents irradiation-induced creep strain resulting from the stress components. 

 The third term represents irradiation-induced swelling strain. 

 The fourth term represents strain caused by thermal expansion. 

The strains due to anisotropic thermal expansion accommodate temperature changes that may occur 
during irradiation. These equations incorporate the secondary creep (creep strain rate is proportional to 
the stress) that characterizes the pyrocarbon material. 

The strain-displacement relationships and equilibrium requirements for a spherical system complete 
the description of the behavior of the pyrocarbon layers:9 

	 4‐3 	

	 4‐4 	

0	 4‐5 	

The same equations describe behavior of the SiC layer except that creep and swelling terms are 
generally omitted. Note that if the swelling or thermal expansion in a layer is isotropic, the radial and 
tangential strain components can be set equal. 

The following series solution is initially assumed: 

, 	∑ 	 	 	 4‐6 	

, 	∑ 	 4‐7 	

, 	∑ 	 4‐8 	

where i is the term number and is an exponent on time t. 

The t0 term is included in these summations to accommodate the presence of internal or external 
pressures at time zero. In Reference 3, the simplification of setting Poisson’s ratio in creep (ν) equal to 0.5 
was made, which would make the pyrocarbons incompressible as they creep. Material properties used in 
the PARFUME code for the coating layers are generally obtained from Reference 25, which recommends 
the use of 0.5 for ν but acknowledges that some other sources prescribe a lower value. Calculations have 
shown that a lower value can significantly lower the stresses in the coating layers. 

Therefore, this derivation is modified to allow any value (from 0 to 0.5) for this parameter. With the 
incremental solution derived here, the parameter ν can be varied as desired throughout irradiation. 
Incorporating this generalization into the derivation modifies Equations (11) and (12) of Reference 3 and 
results in the following: 

1 2 1 2 	 4‐9 	
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,	where	f0	 	0	 4‐10 	

In these expressions, the functions for swelling and thermal expansion strain rates have been 
expanded into series, such as Sr = Σ(Sr)iti. As before, a function F(t) is defined as follows: 

	 ∑ 	 4‐11 	

This function includes the necessary physics for determining stresses that are affected by creep, 
swelling, and thermal expansion deformation of the coating layers. 

The displacement equation of Reference 3 becomes: 

	 4‐12 	

while the following equation remains unchanged: 

	 4‐13 	

Following the process of Reference 10, Equations (4-12) and (4-13) can be used to develop a closed-
form analytical solution, which evolves from simplification of the series solution, and solves for radial 
displacement at any radial location in a spherical shell that exhibits swelling and creep in addition to 
normal elastic behavior: 

, 	

	 4‐14 	

	 4‐15 	

where the coefficients Ki, which are dependent on the geometry and properties of the layer and on the 
radius r, are given by Equations A-1 through A-7 of the Appendix, and the analytical formulation for F(t) 
is presented in Section 4.2.3. It is noted that the coefficient K7 vanishes at the layer surfaces. The stresses 
(or pressures) p and q acting at the layer surfaces are treated as positive outward. If the layer does not 
creep or swell (such as the SiC layer), this equation reduces to that of a pressurized thick elastic shell. 

The fact that the series solution of Equations (4-6) through (4-8) evolves into a closed form solution 
for the displacement in Equation (4-14) and for stresses in Equations (4-31) and (4-32) below suggests 
that the solution could be developed using a different mathematical approach. It may be feasible, for 
example, that with appropriate manipulations the solution could be developed using the Laplace transform 
method. The key though is to produce Equations (4-14), (4-31), and (4-32) by whichever means, since 
these give the general solution at any time for the displacement and stresses in a single layer. From these, 
the solution for any multi-layered particle can be derived. It is noted that the contribution to displacement 
from the integral terms of Equation (4-14) can grow steadily with time as energy is imparted to the layer. 
In a single layer, these displacements could grow without bound until failure is reached. Deformations in 
the three layer coating system of a TRISO-coated particle, though, are controlled by the restraint of the 
stiff SiC layer. 

4.2.2 Internal Gas Pressure 

It is evident from Equation (4-14) that the displacements, and therefore stresses, in a fuel particle are 
dependent on the internal gas pressure. 
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Particle internal gas pressures are calculated according to the Redlich-Kwong equation of state.11 
Parameters utilized by this equation of state are derived from the critical temperature and pressure of each 
gas species12 occupying void volume within the particle. PARFUME considers the generation of CO and 
the release of the noble fission product gases, xenon and krypton, in this pressure calculation.  

PARFUME calculates fission product gas release due to both recoil and diffusion. Direct fission 
recoil from the kernel to the buffer is accounted for by geometrical considerations and fission fragment 
ranges derived from compiled experimental data13. Diffusive release is calculated according to the Booth 
equivalent sphere diffusion model14 which utilizes an effective diffusion coefficient formulated by 
Turnbull.15 This effective diffusion coefficient accounts for intrinsic, thermal and radiation-enhanced 
diffusion. 

One of three algorithms may be chosen for calculating CO production: the General Atomics (GA) 
model, Proksch model, or HSC model. The GA model is a simple temperature dependent correlation16 
that is used primarily for comparison to historic evaluations (Equation 4-16). The Proksch model is also 
used primarily for comparison to historic German evaluations (Equation 4-17).17  

1.64 / 	 4‐16 	

0.21 	 4‐17 	

Where T is the temperature (K) and t is time (days) 

The final model, referred to as the “HSC model” in this report, is a detailed model derived from 
thermochemical free energy minimization calculations performed by the HSC code.18 This CO production 
model considers burnup, temperature, uranium enrichment, and fuel composition in the calculation. Input 
to the HSC code consisted of elemental fission product inventories generated by the MOCUP19 code 
which couples the MCNP20 and ORIGEN221 codes. The resulting equations used in PARFUME are 
summarized in Appendix A. 

4.2.3 Function F(t) 

The function F(t) contains the physics required to appropriately capture effects of irradiation-induced 
creep and swelling deformation. There is a function F(t) for each of the pyrocarbon layers. If the SiC 
layer is treated as an isotropic elastic medium, then its F(t) becomes zero. 

Substituting Equation (4-10) into (4-11) and differentiating with respect to t gives the following 
equation for the function F(t): 

	 4‐18 	

The overlines in Equation (4-18) serve to indicate that swelling and thermal expansion strain rates are 
numerically averaged over the time increment, and are treated as constants through the increment. The 
general solution to this differential equation is the closed-form function: 

	 4‐19 	

where a0 for time increment n is: 

	 4‐20 	
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4.3 General Stress Equations 

4.3.1 Radial Stresses at Layer Interfaces 

The radial stresses at the IPyC/SiC and SiC/OPyC interfaces must be determined so that general 
expressions for radial and tangential stresses, Equations (4-33) and (4-34) below, can be developed. The 
radial stresses at the interfaces are solved by equating displacements at the interfaces and differentiating 
the resulting equations with respect to t. This results in two simultaneous differential equations as 
follows: 

	 4‐21 	

	 4‐22 	

where the quantities Bi are determined from Equations A-8 through A-12 of the Appendix. 

With the functions x(t) and y(t) expressed as follows, which is a suitable representation over a time 
increment: 

	 4‐23 	

	 4‐24 	

the solution to Equations (4-21) and (4-22) becomes: 

	 4‐25 	

	 4‐26 	

where x0, x1, y0, y1, m1, m2, v0, v1, w0, and w1 are given by Equations A-13 through A-21. These quantities 
are constant during a time increment, but change from one increment to the next. In this solution, the SiC 
layer is assumed to not creep or swell. 

Equations (4-21) and (4-22) apply to a three-layer system where there are two interface surfaces. This 
method of solution, though, can be applied as well to a system with any number of coating layers. The 
result is a set of simultaneous differential equations of the form of Equations (4-21) and (4-22), where 
there is an equation for each interface surface. These can be solved using matrix analysis, which yields a 
set of eigenvalues and eigenvectors for the system. The eigenvalues for the two-equation system above 
are m1 and m2. 

As discussed above, the solution is applied in time increments, which means that coefficients D1 and 
D2 for each increment are determined from the initial conditions for that increment. At the start of 
irradiation (t = 0), the initial values for internal pressure p and external pressure q are applied. At time 
zero, all integral terms in Equations (4-35) through (4-38) vanish, and the equations are readily solved to 
give the following for the radial interface stresses at the start of irradiation: 

0 	 4‐27 	

	 4‐28 	
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These become the initial conditions for determining the coefficients D1 and D2 for the first increment. 
In subsequent time increments, the radial stresses at the end of an increment become the initial conditions 
for the next increment. Using Equations (4-25) and (4-26), then, the coefficients for the general time 
increment n are determined to be: 

	 4‐29 	

	 4‐30 	

where 

	 4‐31 	

	 4‐32 	

and tn-1 denotes the time t at the end of the previous increment n-1. In applying these equations, all 
material properties, swelling strain rates, thermal expansion strain rates, and known internal and external 
pressures are numerically averaged over the time increment. 

4.3.2 General Equations for Radial and Tangential Stresses 

Equations (4-25) and (4-26) give the radial contact stresses at the inside and outside surfaces of the 
SiC layer. Once these equations have been solved, together with F(t) from Equation (4-19), it is possible 
to determine radial or tangential stresses at any radial location in the coating layers. Note that tangential 
stresses are needed to determine whether the coating layers fail. 

As shown in Reference 10, the following general expressions for radial and tangential stresses in a 
coating layer can then be developed: 

, 	 4‐33 	

, 2 1 	 4‐34 	

where ra and rb are the inner and outer radii of the layer, respectively, and p and q are the radial stresses 
acting on the inner and outer surfaces of the layer, respectively. Unlike the F(t) of Reference 10, that of 
Equation (4-19) allows Poisson’s ratio in creep (ν) to be set to any value. 

4.4 General Displacement Equations 
Equation (4-14) is the basic equation used in PARFUME to calculate radial displacement. 

Displacements are calculated at the radial locations r2, r3, r4, and r5 so that new values can be determined 
for these radii at the end of each time increment; radial displacement is not calculated at r1 since it is 
assumed that the inner portion of the buffer moves with the kernel. The updated radii are needed in the 
thermal and fission product transport analyses of the particle, and are used in the stress solution. 

Equation (4-14) is applied below to the four shell surfaces located at the two interfaces (r = r3, r4) of 
the TRISO-coated particle. Note that the IPyC and OPyC layers are assumed to exhibit secondary creep 
and anisotropic swelling, and all three layers are allowed to exhibit anisotropic thermal expansion. 

IPyC outer surface 

	 4‐35 	
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SiC inner and outer surfaces 

	 4‐36 	

	 4‐37 	

OPyC inner Surface 

	 4‐38 	

	

where the coefficients aj, bj, cj, and dj are determined by substituting the appropriate radii and material 
properties into the expressions for Ki. 

 

4.4.1 SiC Displacement (r3 and r4) 

Once the radial stresses σrO and σrI are determined, then the displacements at the inner and outer 
surfaces of the SiC are determined from Equations (4-36) and (4-37).  

Because of the integrations in these equations, the displacements at r3 and r4 are most readily 
determined by differentiating through with respect to t, and calculating the displacements incrementally. 
For example, Equations (4-36) and (4-37) become: 

	 4‐39 	

	 4‐40 	

4.4.2 IPyC and OPyC Displacement (r2 and r5) 

The displacements at r2 and r5 are obtained from Equations (4-35) and (4-38) except that the 
coefficients are modified appropriately and the equations are applied incrementally. These become: 

	 4‐41 	

	 4‐42 	

The coefficients ai and di are calculated from Equations A-1 through A-6 using dimensions 
appropriate for the IPyC inner surface and OPyC outer surface, respectively. 

4.4.3 Modeling of the Buffer-IPyC Gap 

An important aspect of the fuel particle behavior is the development of a gap between the buffer and 
IPyC layers (i.e., at r2) during irradiation. The gap is formed because the irradiation-induced shrinkage of 
the porous buffer exceeds that of the IPyC layer. Its formation requires the buffer separating from the 
IPyC layer and the buffer shrinkage exceeding any kernel swelling that would be pushing it in the other 
direction, expanding the buffer’s inner diameter. A significant consequence of this gap is that the low 
thermal conductivity of the gap region (which is occupied by fission products) contributes to an increase 
in the kernel temperature. The kernel temperature affects fission gas release, which in turn affects the gas 
pressure acting on the coating layers and fission product transport through the particle layers and fuel 
matrix. Because the magnitude of the increase in kernel temperature depends on the size of the gap, 
PARFUME calculates the gap size throughout irradiation. This is done by calculating a displacement for 
the outer surface of the buffer layer in addition to displacement u2 of the IPyC inner surface. 
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4.4.3.1 Buffer Displacement 

In this calculation, the buffer is assumed to shrink and creep due to irradiation and the fuel kernel is 
assumed to swell throughout irradiation. It is currently assumed in PARFUME for purposes of this 
calculation that the inner surface of the buffer moves with the kernel, and that the buffer remains intact 
throughout irradiation. Application of Equation (4-14) to the inner surface of the buffer gives the 
following: 

	 4‐43 	

where pB is the radial contact stress at the interface of the kernel and buffer; uk is the known displacement 
of the kernel surface; and cB, SB, and αB are creep, shrinkage, and expansion properties for the buffer. The 
coefficients a1B and a3B are obtained by substituting appropriate values into Equations A-1 and A-3.  

Because of its porosity, the buffer is assumed to experience no deformation due to the gas pressure. 
Thus, there is no pressure applied to its outer surface. Also, because the buffer is assumed to be isotropic 
(per Reference 25, for low-density pyrocarbon), the radial components of swelling and thermal expansion 
strain rate (S, αṪ) are set equal to the corresponding tangential components. 

The pressure pB can be determined from Equation (4-43) by differentiating through with respect to t, 
and solving the resulting differential equation. This gives the following for the pressure at any time during 
time increment n: 
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where tn-1 is the time at the start of the increment, and the derivative duk/dt is treated as a constant through 
the time increment. Using this contact pressure, the displacement at the outer surface of the buffer (u2B) is 
then determined incrementally from: 
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where b1B and b3B are determined from Equations A-1 and A-3 using dimensions at the outer surface of 
the buffer, and r2B is the outer radius of the buffer. 

4.4.3.2 IPyC Displacement 

The displacement of the IPyC is initially formulated by applying Equation (4-14) in time increments 
as shown below: 
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The displacement of the IPyC is determined from Equation (4-46) setting p equal to the internal gas 
pressure and q equal to the calculated radial stress at the interface between the IPyC and SiC layers. 

4.4.3.3 Example Gap Behavior 

To demonstrate that PARFUME produces accurate results for the buffer/IPyC gap (assuming 
accuracy of the assumptions), a finite element analysis was performed using the ABAQUS program.22 In 
this analysis, the buffer was assumed to remain intact and sustain a tangential stress. The Poisson's ratio in 
creep for the PyC and buffer layers was changed from 0.4 to 0.5, since the algorithm for creep behavior in 
ABAQUS permits only this value. As shown in Figure 4-1, results show close agreement for the two 
analyses. 
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Figure 4-1. PARFUME and ABAQUS comparison. 

4.5 Two-layer and One-layer Solutions 
Situations arise in fuel particle evaluations that require stress analysis of a two-layer or one-layer 

shell. For example, a detachment of the IPyC from the SiC results in both two-layer (SiC/OPyC) and one-
layer (IPyC) shells. In such cases, an assessment is made as to whether the IPyC shell can sustain the 
internal pressure on its own. If it fails, then the internal pressure is applied directly to the two-layer 
(SiC/OPyC) shell. 

Stresses and displacements for a two-layer shell are obtained in the same manner as used for the three 
layer shell, i.e., by equating displacements at the interface between layers to solve for the radial stress at 
the interface. This contact stress, together with the known internal and external pressures, is used to 
determine displacements at the layer surfaces. The tangential stresses in the layers are determined using 
Equation (4-34) [and Equation (4-19) for F(t)]. 

The radial stress at the SiC/OPyC interface for a particle having a debonded IPyC is as follows: 
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while the radial stress at the IPyC/SiC interface for a particle having a debonded OPyC is: 
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where the primed quantities are determined from Equations A-22 through A-29. 

Since there is no radial interface stress to calculate in a one-layer particle, the known internal and 
external pressures acting on the layer are used directly to determine displacements and tangential stresses. 
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4.6 Particle Failure Mechanisms 
The solution described above for stresses in a TRISO-coated particle is one-dimensional, relying on 

perfect spherical symmetry. Failure of a one-dimensional particle occurs if the internal pressure is high 
enough that the tangential stress in the SiC layer reaches the SiC strength for that particle. PARFUME 
also considers multi-dimensional behavior that has been observed in post-irradiation examination (PIE) of 
US fuel particles and may contribute to particle failures, such as 1) cracking of the IPyC layer, 2) partial 
debonding of the IPyC from the SiC layer, 3) an aspherical geometry, and 4) the amoeba effect. 

4.6.1 Pressure Vessel Failure 

A traditional failure mechanism addressed in PARFUME as well as other fuel performance codes is 
the pressure vessel failure of a one-dimensional spherical particle. The particle is one-dimensional 
because of perfect symmetry in the tangential and azimuthal directions. Early during irradiation, the 
shrinkage of the pyrocarbon layers puts the SiC layer in compression. As irradiation progresses, the 
irradiation-induced creep of the pyrocarbon layers tends to relieve some of this compressive stress. 
Additionally, the buildup of fission gas pressure tends to put the coating layers in tension. If the gas 
pressure increases enough, the tangential stress in the SiC layer could eventually become tensile. A 
traditional pressure vessel failure is expected to occur if the tangential stress reaches a value that exceeds 
the strength of the SiC for that particle. 

4.6.2 Cracking of the IPyC 

One form of multi-dimensional behavior that is modeled in PARFUME is a radial shrinkage crack in 
the IPyC. The crack in the IPyC is typical of those observed in PIE of the New Production Modular High-
Temperature Gas Cooled Reactor (NP-MHTGR) fuel particles. During irradiation, shrinkage of the 
initially intact IPyC layer induces a significant tensile stress in that layer. If the stress exceeds the tensile 
strength of the IPyC layer, then a radial crack develops in the IPyC. The radial crack creates local tensile 
stresses in the SiC layer that could lead to particle failure. An axisymmetric finite element model used in 
an ABAQUS22 analysis of a cracked three-layer geometry is shown in Figure 4-2. Figure 4-3 plots a time 
history for the maximum calculated principal stress at a point in the SiC layer near the tip of the crack. 
The stress at this point increases as the pyrocarbon layers shrink during irradiation, but eventually peaks 
as creep in the pyrocarbon layers overcomes the shrinkage effect. The evaluation of particles for potential 
failure due to a cracked IPyC is discussed in Section 5.3.2.1. 

 

Figure 4-2. Finite element model for fuel particle having a radial crack in the IPyC layer. 
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Figure 4-3. Stress history in SiC layer (near crack tip) for a cracked particle. 

4.6.3 Partial Debonding of the IPyC from the SiC 

A second form of multi-dimensional behavior modeled in PARFUME is partial debonding between 
the IPyC and the SiC, which has also been observed in PIE of the NP-MHTGR fuel particles. During 
irradiation, shrinkage of the IPyC layer induces a radial tensile stress at the interface between the IPyC 
and SiC layers. If the stress exceeds the bond strength between layers, then debonding of the IPyC from 
the SiC occurs. The debonding process is not likely to be an instantaneous detachment over the entire 
surface of the interface. Rather, it begins at an initiation point from which the layers progressively unzip 
during irradiation. An axisymmetric finite element model used in ABAQUS analysis for the debonded 
geometry is shown in Figure 4-4. The model plotted is a deformed shape as it appears part way through 
irradiation, after the unzipping process has begun. 

In an ABAQUS analysis of a debonded particle, the IPyC and SiC are initially assumed to be 
debonded at an arbitrary point in the model. Continued debonding, if it occurs, then progresses from this 
point. The criterion used is that the next node ahead of the crack tip debonds when the local stress across 
the interface at a specified distance ahead of the crack tip reaches the specified bond strength. A stress 
concentration occurs in the SiC layer at the tip of the debonded region, containing tensile stress 
components that could contribute to failure of the SiC. Figure 4-5 plots a time history for the maximum 
calculated principal stress at a point (point 1) on the inner surface of the SiC layer along the debonded 
path. The stress at this point rose to a peak as the tip of the debonded region passed through this location. 
With continued unzipping between layers, the stress at this location rapidly diminished. Also shown in 
Figure 4-5 is a stress history at a point further down the debonded path (point 2). As would be expected, 
the stress at this point peaked at a later time during irradiation. The evaluation of particles for potential 
failure due to a partially debonded IPyC is discussed in Section 5.3.2.2. 
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Figure 4-4. Finite element model for a partially debonded particle. 

 

 

Figure 4-5. Inner SiC layer stress histories at two points that experience debonding. 
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4.6.4 Pressure Vessel Failure of an Aspherical Particle 

A third form of multi-dimensional behavior modeled in PARFUME is asphericity. The code 
incorporates the effects of asphericity for particles that have a flat facet but that are otherwise spherical. 
Because the effects of an ellipsoidal shape are small in comparison, this type of asphericity is not included 
in the code. During irradiation, the faceted portion of the particle acts as a flat plate that retains the 
internal gas pressure. If the pressure builds up high enough, this results in a local region of tensile stress 
in the central portion of the plate, which can contribute to particle failures. Unlike failures caused by 
cracking of the IPyC or partial debonding of the IPyC, which are governed by shrinkage of the 
pyrocarbons, failures caused by asphericity are controlled by the internal pressure. Therefore, while 
failures due to IPyC cracking and debonding tend to occur early during irradiation when shrinkage 
stresses are at their highest, failures due to asphericity are likely to occur later when the internal pressure 
is highest. An axisymmetric finite element model used to analyze for the effects of asphericity is shown in 
Figure 4-6. 

The degree of asphericity for a particle is defined in terms of an aspect ratio, which is the ratio of the 
major diameter to minor diameter. A reason for defining this parameter is that it is a commonly used 
measure of the severity of deformity in a particle, and is thereby used as a criterion for particle 
acceptability. Using dimensions shown in Figure 4-6, the aspect ratio (A) is: 

√
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where R is the outer radius of the particle and r is the radius of the facet. PARFUME allows the user to 
specify a statistical distribution for the aspect ratio when considering asphericity. 

Figure 4-7 plots a time history for the principal stress in the SiC calculated at the center of the faceted 
portion of an aspherical (faceted) particle. Also plotted is the time history for the tangential stress at a 
location removed from the facet. A comparison of these stress histories shows how the facet intensifies 
the stress in that local region of the particle. Depending on its severity, this stress intensification could 
contribute to particle failures. The evaluation of particles for potential failure due to asphericity is 
discussed in Section 5.3.2.3. 

 

Figure 4-6. Finite element model for an aspherical fuel particle. 
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Figure 4-7. Stress histories for a faceted and spherical fuel particles. 

4.6.5 Amoeba Effect 

A final failure mechanism currently considered in the code is failure of the SiC due to the amoeba 
effect, which does not involve stress levels in the coating layer. Failure due to the amoeba effect is 
evaluated by determining the distance that the fuel kernel migrates as a function of the temperature 
gradient at the particle location. The migration distance is calculated according to the formulation of 
Reference 23. Particle failure is assumed to occur when the kernel comes into contact with the SiC layer. 
The evaluation of particles for failure due to the amoeba effect is discussed in more detail in 
Section 5.3.2.4. 
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5. MULTI-DIMENSIONAL STRESS BEHAVIOR 

5.1 Overview 
Based upon post-irradiation examination results of U.S. fuel particles, it was concluded that modeling 

one-dimensional pressure vessel failure alone was insufficient. For example, one-dimensional pressure 
vessel failure models could not predict particle failures due to irradiation-induced shrinkage cracks in the 
IPyC layer. Therefore, several models to predict multi-dimensional behavior were implemented in 
PARFUME. For example models which predict particle failure due to asphericity, debonding, and IPyC 
cracking have been incorporated into PARFUME. A general software development process was followed 
in order to incorporate these multi-dimensional effects into the code. 

As depicted in Figure 5-1, the methodology used to model the effects of multi-dimensional behavior 
in PARFUME consists of a 3-step process which includes: finite element analyses, statistical analyses, 
and failure probability determinations. A detailed finite element (FE) analysis on cracked, debonded, or 
aspherical particles for a selected range of parametric variations is used, in conjunction with results from 
the solution described in Section 4 to make a statistical approximation of the stress levels in any particle. 
Using this approach, numerous parameters can be varied statistically (about a mean value) including 
thicknesses of the three coating layers, densities and Bacon Anisotropy Factor (BAF) values for the 
pyrocarbons, irradiation temperature, the creep coefficient for the pyrocarbons, kernel diameter, buffer 
thickness, and Poisson’s ratio in creep for the pyrocarbons. In the statistical approach used,24 FE analyses 
are performed (using the ABAQUS program22) on just enough cases that the effects of varying each 
parameter individually can be determined. The information obtained from the FE analyses is used in 
conjunction with one-dimensional stress analysis results obtained using the closed-form solution 
described in Section 4. Simple statistical fits are performed on the results of the analyses and a correlation 
is drawn between the stresses in the one-dimensional and multi-dimensional particles for the same 
parametric variations. Finally, particle failure probabilities are computed using Weibull statistics. 

 

Figure 5-1. Flow diagram for general statistical approach. 
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5.2 Statistical Approach for Determining Stresses 
The statistical approach used to correlate one-dimensional and multi-dimensional stresses is 

developed in terms of variations about mean values for the parameters that describe a batch of fuel 
particles. Since a set of mean values and the statistical deviations from the mean for any particular batch 
of particles are generally unique to that batch, it is important that the method be flexible in addressing any 
set of mean values and statistical variations about the mean. 

The fundamental equation used to determine multi-dimensional stress (i.e., c) in particles by 
correlating mean stress values is shown in Equation (5-1) and consists of four quantities: , , , 
and h (see Nomenclature for definitions). When all parameters in a cracked particle in a multi-
dimensional stress state are at the mean values for a specified batch of particles, the maximum calculated 
stress in the SiC layer of the particle (as determined by FE analysis) assumes a value . Similarly, when 
all parameters in a non-cracked one-dimensional particle are at the same mean values, the maximum 
calculated stress in the SiC layer (as determined by the closed-form PARFUME solution) is . Upon 
varying a single parameter ν from its mean value, the maximum stress in the SiC layer of the one-
dimensional particle is readily determined from the closed-form solution for . The stress in the multi-
dimensional particle having parameter that varies from its mean value by an amount Δν becomes: 

	 5‐1 	

 

where h(ν) is a function of the following quadratic form: 

 

1 	 5‐2 	

that brings the maximum stress in the one-dimensional particle into essentially exact correlation with that 
in the multi-dimensional particle. This is effectively a Taylor series expansion, where all terms above 
second order drop out because higher order derivatives become very small. A function hi(νi) exists for 
each parameter that exhibits a statistical variation among the particles in a batch. 

When several parameters are varied from their mean values, which is characteristic of a typical coated 
fuel particle, the stress u in the one-dimensional particle is again readily determined from the closed-
form solution (in PARFUME). The stress in the multi-dimensional particle is then approximated from: 

, , , … , , , … …	 5‐3 	

where there is a function hi for each statistically varying parameter. 

Figure 5-2 demonstrates how the h function for a parameter is produced from several data points. At 
the midpoint, where ν = 0, h always has a value of 1. The other data points are determined by 
performing FE analysis in which the parameter under consideration is varied approximately four standard 
deviations to each side of its mean value. All other parameters in these analyses are held at their mean 
values. The same cases are solved for a one-dimensional particle using the closed-form solution in 
PARFUME. The value for h at these data points is the ratio between the stresses for multi-dimensional 
and one-dimensional particles, respectively. A polynomial curve fit is then made on the data points to 
generate the quadratic h function. A suitable function can generally be produced from just the two outside 
data points in addition to the center point (i.e., ν = 0) though more data points can be used if desired. 
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Figure 5-2. Generating an h function for variations in SiC thickness. 

Determining an h function for each statistically varying parameter in a batch of particles can in some 
cases involve more work than is desired to calculate a failure probability, since several FE analyses must 
be performed to generate a set of h functions. For situations where some loss of accuracy in the failure 
probability is acceptable, it has been found that a reasonable estimate can be obtained by simply setting 
the correlation functions equal to one. With this approximation, the SiC stress in the multi-dimensional 
particle becomes: 

, , , … , , , … 	 5‐4 	

It is also shown in Reference 24 that a high level of accuracy may be attained by including selected h 
functions in the equation above. Reference 24 shows that including h functions for just the three layer 
thicknesses gave very accurate results when evaluating particles having a cracked IPyC. The user of 
PARFUME inputs values for coefficients c1 and c2 [in Equation (5-2)] for h functions that correspond to 
the selected parameters, and sets c1 and c2 equal to zero for all other parameters. 

5.3 Failure Probability Determination 

5.3.1 Failure Probability Theory 

Once stresses have been determined, the next step is to use the stresses calculated to determine 
particle failure probabilities in the fuel performance model. As with other models, Weibull statistics are 
used to evaluate failure. The methodology is discussed in the context of SiC layer failure, but this process 
is applicable to any layer. 

In this approach, a strength distribution for the SiC layer is characterized by a mean strength ms and a 
modulus m. The mean strength for these evaluations is determined from a characteristic strength 0 
obtained from data from Reference 25. The method used for determining the mean strength is 
summarized below. 
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In the Weibull theory, the failure probability for the SiC is as follows:26 

1 ⁄	
	 5‐5 	

Once finite element results are obtained from the analysis of the spherical particle, the stress 
integration above can be performed using the principle of independent action (PIA) model for treating 
multiaxial stress states:26 
	 	 	 5‐6 	

Since only tensile stresses contribute to fracture of the material, compressive stresses are not included 
in the integration. Based on the stress distribution throughout the volume of the SiC layer, the integral 
above assumes a value that can be written as follows: 

		 	 5‐7 	

where c is the maximum value calculated for a principal stress anywhere in the volume. The integral I is 
a normalized integration of the stress distribution, where the maximum stress (taken to the m power) has 
been factored out. The failure probability then becomes: 

1 	 5‐8 	

In the fuel performance model, the strength of the layer is sampled according to the following 
cumulative distribution function:27 

1 ⁄ 	 5‐9 	

The mean strength ms then is determined by applying the condition that the failure probability 
calculated by the fuel performance model per Equation (5-9) equals that of Equation (5-8). This is done 
by equating the exponents of the two equations and using stresses for a particle having nominal values for 
all parameters to determine the integral I. The effective mean strength for the layer is then defined to be: 

⁄⁄ 	 5‐10 	

where the subscript n denotes a particle having nominal values for all parameters. Note that the integral In 

for the IPyC layer and for the SiC layer of a one-dimensional spherical particle is calculated within 
PARFUME, for example when evaluating failure due to pressure stresses (one-dimensional analysis). The 
integral In for the SiC layer of a multi-dimensional particle is based on the integration of the stress 
distribution in the SiC obtained from finite element analysis of a particle having nominal values for all 
parameters. The mean strength from Equation (5-10) for a batch of fuel particles is then input to the 
PARFUME code so that a failure probability can be determined. In the Monte Carlo routine of 
PARFUME, the maximum stress c in the SiC for each particle is compared to a strength that is sampled 
from a Weibull distribution having mean strength ms and modulus m to determine whether or not particle 
failure occurs. 

5.3.2 Determining Failure Modes 

Understanding and determining failure modes is an important aspect of the internal logic structure in 
PARFUME. The various failure modes described below are assimilated into PARFUME such that failure 
of a particle in one mode excludes failure in any other mode for the same particle. The fundamental 
failure logic is described in Section 5.4. 
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As discussed in Section 4.6, the multi-dimensional failure mechanisms modeled in PARFUME are 
failures of the SiC due to 1) cracking of the IPyC layer, 2) partial debonding of the IPyC from the SiC 
layer, 3) aspherical geometry, and 4) the amoeba effect. The treatment of the cracked IPyC is published in 
References 28 and 29, while debonding and asphericity are published in Reference 30. Details of these 
treatments are described below. 

Another failure mechanism that has been investigated but not yet modeled in the code is failure due to 
thinning or degradation of the SiC layer.31 

5.3.2.1 Cracking of the IPyC 

To evaluate particles for potential failure due to a cracked IPyC, the code first determines whether the 
IPyC cracks. This is done by calculating the tangential stress in the IPyC layer using the solution in the 
subroutine FSICFUEL, which is a subroutine that performs all structural mechanics calculations in 
PARFUME. In the solution schemes discussed in Section 5.4, it compares this tangential stress to a 
strength that is sampled from a Weibull distribution having mean strength ms and modulus m. The mean 
strength ms for the IPyC is calculated using Equation (5-10), where the integral In accounts for the stress 
distribution throughout the volume of the IPyC, and 0 is a characteristic strength for the IPyC. Because 
of the symmetry of the stress distribution, one-dimensional theory is appropriate; therefore, this 
integration is performed internally in the PARFUME code instead of being determined from results of FE 
analysis. If the tangential stress exceeds the strength for a given particle, then the IPyC layer is assumed 
to fail. 

If the code determines that the IPyC cracks, it then evaluates the integrity of the SiC layer. 
Multidimensional behavior generally creates stress concentrations in the SiC material that can lead to 
particle failure. These stresses are estimated according to the statistical methodology described above and 
then used to determine particle failure probabilities in the fuel performance model. As has been 
historically done in fuel particle evaluations, Weibull statistics are used to evaluate failures of the SiC 
layer. The mean strength for these evaluations is determined from the characteristic strength 0 according 
to Equation (5-10). 

To evaluate the structural integrity of the SiC layer, PARFUME calculates a stress for the SiC layer 
utilizing the statistical method described above in Equation (5-3) or Equation (5-4). It compares this stress 
to a strength that is sampled from a Weibull distribution having mean strength ms and modulus m. The 
mean strength is calculated from Equation (5-10), where the integral In represents a stress distribution 
obtained from an ABAQUS22 analysis of a cracked particle having mean values for all parameters. 
Particle failure is indicated when the maximum stress exceeds the sampled strength.  

The characteristic strength for the SiC layer is obtained from the General Atomics data. The integral 
In is a normalized integration of the stress distribution over the volume V of the SiC layer as follows: 
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where the subscript n denotes a particle having mean values for all parameters. Since only tensile stresses 
contribute to fracture of the material, compressive stresses are not included in the integration. Equation 
(5-11) accounts for the stress distribution in the layer resulting from multi-dimensional behavior. 

5.3.2.2 Partial Debonding of the IPyC from the SiC 

To evaluate particles for potential failure due to debonding, the code first determines whether 
debonding occurs. It calculates the radial stress at the interface between the IPyC and SiC layers using the 
closed form solution in the subroutine FSICFUEL. It compares this stress to the bond strength between 
layers. PARFUME currently treats the bond strength as a parameter having a Gaussian distribution with a 
specified mean value and standard deviation. In the Monte Carlo or integration solution schemes for 
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calculating particle failures, the bond strength for a particle is obtained from this distribution. If the radial 
stress exceeds the bond strength for a given particle, then debonding is assumed to occur at the IPyC and 
SiC interface. If the code determines that debonding occurs, it then calculates a stress for the SiC layer 
utilizing the statistical method described above, i.e., Equation (5-3) or Equation (5-4). It compares this 
stress to a strength that is sampled from a Weibull distribution having mean strength ms and modulus m. 
The mean strength is calculated from Equation (5-10), where the integral In [of Equation (5-11)] 
represents a stress distribution obtained from the ABAQUS analysis of a debonded particle having mean 
values for all parameters (referred to as a nominal particle). With the moving crack tip, significant stress 
intensifications may occur at many points along the debonded path. These stress concentrations are 
typically not as severe as those at the crack tip of a cracked IPyC, but they occur over a larger portion of 
the SiC volume. Because the peak stresses at these points do not occur simultaneously, the calculation of 
In is based on a stress distribution reflecting the maximum stresses that occur at any time during 
irradiation. 

Note that the radial stress must exceed the bond strength in order to determine the stress distribution 
in the nominal debonded particle. For example if the maximum radial stress for the nominal particle is 
less than the mean bond strength, then debonding would not occur in the nominal particle. Debonding 
could, however, still occur in some particles in the batch. In order to capture the debonding of these 
particles in the calculations, the bond strength (in the ABAQUS analysis of the nominal particle) should 
be set equal to the maximum radial stress minus a selected value , and In should be calculated from the 
resulting stress distribution. Note that scoping studies have shown that 5 MPa is a reasonable value to 
choose for . 

5.3.2.3 Asphericity 

In evaluating asphericity, the code calculates a maximum stress for the SiC layer utilizing the 
statistical method described above [Equation (5-3) or Equation (5-4)]. However, a second term is added to 
the right hand side of these equations to correctly estimate the maximum stress c for an aspherical 
particle30, as follows for Equation (5-4): 

, , , … , , , … , , , … 	 5‐12 	

where Δ , Δ , and Δ  are changes in the stresses , , and  in going from the first extremum 
(or minimum) to the end of irradiation in each respective stress time history. Refer to Figure 4-7 for a 
typical time history of the SiC principal stress in a faceted particle. If a second extremum (or maximum) 
occurs before the end of irradiation is reached, then Δ , Δ , and Δ  are taken as changes in these 
stresses in going from the minimum to the maximum. This ensures calculation of the largest value of 
stress that occurs anytime during the irradiation history. In Equation (5-12), , , and  are stress 
values occurring at the time of the minimum in each stress history. The first term then takes the solution 
from time zero to the time of the minimum in the stress history, while the second term takes the solution 
from the minimum to the end of irradiation or to a maximum, whichever occurs first. The additional term 
is needed for asphericity evaluations because failures due to asphericity occur after the first extremum for 
u has been reached, when shrinkage effects from the pyrocarbons are diminishing.  

With the addition of a second term, Equation (5-3) becomes: 

, , , , , … 	 	

, , , … 	 5‐13 	

The second set of correlation functions h2i is determined in the same way as the first set h1i (Section 
5.1), using output from the same ABAQUS finite element analyses.  
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PARFUME compares the stress from Equation (5-12) or (5-13) to a strength that is sampled from a 
Weibull distribution having mean strength ms and modulus m. If the stress exceeds the strength for a 
given particle, then the particle is assumed to have failed. Note that the mean strength is calculated from 
Equation (5-10), where the integral In represents a stress distribution obtained from the ABAQUS analysis 
of a faceted particle having mean values for all parameters (referred to as a nominal particle). If there is 
no asphericity, then the solution reverts to the traditional pressure vessel failure of a perfectly spherical 
particle, with a SiC strength appropriate for this symmetrical stress distribution. 

5.3.2.4 Amoeba Effect 

Kernel migration (amoeba effect) occurs within the presence of a macroscopic temperature gradient 
and is calculated according to a standard formulation.23 This algorithm utilizes kernel migration 
coefficients derived from experimental data. For UCO fuel, where kernel migration is expected to be 
miniscule, a General Atomics derived correlation23 is used. For UO2 fuel, where kernel migration can be 
significant, recent data (from the last 20 years)32,33 was fitted to an Arrhenius function to derive a kernel 
migration coefficient correlation. Particle failure is assumed to occur when the kernel comes into contact 
with the SiC layer. 

Determining failure of the SiC due to the amoeba effect is a straightforward process. The distance that 
the kernel has migrated is calculated at each time step in a particle solution using a kernel migration 
coefficient (KMC) appropriate for the fuel type, as described in Equation 5-14 for UCO fuel and Equation 
5-15 for UO2.  

0.62
.

for	UCO	 5‐14 	

5.032 10 for	UO2	 5‐15 	

where: 

KMC (T) = kernel migration coefficient as a function of temperature (m2·K·s-1) 

T = temperature (K) 

R = ideal gas constant (8.314 J·mol-1·K-1) 

The equation used to model kernel migration distance is then given by23: 

	 	 5‐16 	

where: 

x(t) = total migration distance at time t (m) 

t = total time for particle irradiation/heating conditions (s) 

T(τ) = average particle temperature at time τ (K) 

dT(τ)/dx = temperature gradient across the particle at time τ (K·m-1) 

Once the kernel has migrated far enough (as determined from integrating over time) to make contact 
with the SiC, the SiC is assumed to fail. 

5.3.2.5 Thinning of the SiC Layer 

As stated above, thinning of the SiC is an additional failure mechanism that is currently under 
development. Results of a study into the effects of SiC layer thinning are described in Reference 31. 
Thinning of the SiC in local areas makes a negligible contribution to the particle failure probability when 
considering failures of the SiC due to stresses in the layer. However, complete penetration through the 
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SiC provides an open path for fission product transport, and, therefore, constitutes a functional failure of 
the particle. For thinning over global areas of the SiC, failures can occur due to stress concentrations at 
the edges of the thinned regions induced by shrinkage of the pyrocarbons. If the thinning occurs over a 
significant portion (or all) of the SiC surface, the detachment of the IPyC from the SiC over the thinned 
region also enhances the probability that the IPyC will fail due to internal pressure loading. If the IPyC 
fails, then the internal pressure loading is directly transmitted to a portion or all of the SiC surface area, 
which can lead to failure of the SiC layer. The criterion used in PARFUME for the failure of thinned 
particles due to internal pressure loading, therefore, will include an evaluation for failure of the IPyC 
layer.  

Chemical attack of the SiC by palladium is modeled in PARFUME by calculating the penetration of 
palladium in the SiC layer. The penetration rate is calculated by an Arrhenius function fitted to all 
available in-reactor data for Pd penetration in SiC35,36,37,38. The penetration rate is given by: 

38.232
.
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where: 

P = rate of penetration of the SiC (m/h) 

T = absolute centerline temperature (K) 

Although PARFUME computes palladium penetration as a global temperature-dependent penetration 
rate, post-irradiation examination might indicate other factors than temperature influencing palladium 
behavior. 

5.4 Solution Schemes for Predicting Failure 
PARFUME provides two basic solution schemes for predicting particle failure: Monte Carlo and 

numerical integration. An advantage of having two solutions schemes is that the integration scheme can 
be used to check the results of the Monte Carlo scheme and vice versa. The integration scheme includes 
both a full integration solution scheme and a fast integration solution scheme. Using the fast integration 
scheme can substantially reduce the time required to perform the integration with only a minimal loss of 
accuracy. Therefore, an added advantage of the integration method is that it can greatly enhance 
efficiency of the failure probability calculation. The Monte Carlo and integration failure probability 
schemes are discussed below. 

5.4.1 Monte Carlo 

In the Monte Carlo routine of PARFUME, stresses are analyzed for a statistically sampled batch of 
particles, where the parameters sampled may include any of those identified in Section 5.1 together with 
the strength for each of the coating layers. The stresses in each sampled particle are solved incrementally 
from the beginning to the end of irradiation. At each time increment, the particle is checked for debonding 
between the IPyC and SiC layers, for cracking of the IPyC layer, and for failure of the SiC layer. If 
debonding occurs, the particle is checked for failure of the SiC in that mode throughout the remainder of 
irradiation. If the particle does not fail due to debonding, then the particle is checked for failure of the SiC 
due to the buildup of internal gas pressure. If cracking of the IPyC occurs, then the particle is checked for 
failure of the SiC due to the cracked IPyC at each increment thereafter. If the particle does not fail due to 
IPyC cracking, then the particle is checked for failure of the SiC due to buildup of internal gas pressure. If 
neither cracking nor debonding occurs, then the SiC layer is evaluated for failure due to buildup of 
internal gas pressure. In addition to these potential failure modes, a particle is evaluated at each time 
increment for failure due to the amoeba effect. 
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If the particle is aspherical, then the stress in the SiC layer due to internal gas pressure is adjusted to 
account for the asphericity. Also, the strength of the SiC layer is based on the stress distribution for an 
aspherical particle. Failure of the SiC layer is then measured in terms of this adjusted stress and SiC 
strength. If there is no asphericity, then the solution reverts to the traditional pressure vessel failure of a 
perfectly spherical particle, with a SiC strength appropriate for this symmetrical stress distribution. 
PARFUME allows the user to specify statistical distributions for the bond strength and the aspect ratio 
when considering debonding and asphericity. It also allows the user to opt out from considering 
debonding or asphericity. 

In the failure evaluations, the Weibull strength of the SiC layer is based on a stress distribution 
corresponding to a cracked IPyC, a debonded IPyC, or an intact IPyC, whichever is appropriate. In the 
evaluation for failure due to gas pressure, the effect of any cracking or debonding of the IPyC layer is 
neglected. This is because the crack or debond has only a minor effect on the overall SiC stress 
distribution once the hoop stress in the SiC becomes tensile. 

PARFUME retains the time and location at which each failure occurs in the Monte Carlo sampling 
process. This information is used to construct a time evolution of the failure probability for a batch of 
particles. It is also used as input to the fission product diffusion calculations. 

5.4.2 Integral Formulation 

In the integration approach, the failure probability Pf for a particle batch will be formulated in terms 
of an integral. Because the integral typically involves Gaussian statistical distributions for particle design 
parameters, it generally cannot be integrated in closed-form. The development of the failure probability 
integral and methods for numerically evaluating the integral are described below. 

5.4.2.1 Full Integration 

Failure of a particle is assumed to occur when the maximum stress  in the SiC layer exceeds the 
strength . Initially assuming that the strength levels  for the particles in a batch are distributed normally 
according to a Gaussian distribution, the particles in a batch have a mean strength s with a standard 
deviation Ds. The stress  is a function of a parameter νk that also is assumed to vary according to some 
statistical distribution. Thus, the stress in a particle can be expressed as follows: 
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Assuming momentarily that the parameter νk is fixed for a batch of particles, then the probability that 
the stress in a particle exceeds its strength is:39 

√
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This is the failure probability associated with a specific value for the parameter νk. We next consider 
variations in this parameter. If ai is the fraction of particles within the batch that have a parameter νk equal 
to νki, then the total failure probability for the batch is: 

⋯	 5‐20 	

This summation is converted to an integral by writing the ai as a density function for the parameter νk: 

	 5‐21 	
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If the parameter vk is assumed to be distributed normally with a mean value k and a standard 
deviation of Dk, then: 

	
√ √
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Determining the failure probability for this batch of particles is reduced to performing the integration 
above. Because Equation (5-22) must be solved numerically, its accuracy depends on the level of 
precision in the numerical integration performed. This is discussed later in more detail. 

The formulation above can be extended to situations where the stress  is a function of several 
parameters that vary according to some statistical distribution. Consider the case of a batch of particles 
where the stress is a function of two such parameters, vj and vk: 

, 	 5‐23 	

The probability of failure associated with specific values vj and vk for the two parameters is: 

,
√

, 	 5‐24 	

If am is the fraction of particles having parameter vj equal to vjm, and an is the fraction of particles 
having parameter vk equal to vkn, then the total batch failure probability is: 

∑ 	∑ , 	 5‐25 	

Again, this is converted to an integral by writing am and an as density functions for the parameters vj 
and vk. Then, 

	 , 	 5‐26 	

Assuming that the parameters vj and vk are both normally distributed, then the failure probability 
becomes: 

	 	
√

	

√

	

√

	
, 	 5‐27 	

A pattern is established by comparing Equations (5-22) and (5-27). Each parameter considered adds a 
density function to the integrand and increases the level of integration by one. Any number of parameters 
can be accommodated in the formulation, but each adds to the computational time required to perform the 
integration.  

In what is labeled the “full integration” method, the limits of integration in the mathematical 
expression above extend to infinity. In reality, of course, these parameters do not physically cover this 
range. It is found that a full value for the integral can be attained by integrating over a range of four 
standard deviations to each side of the mean value for each parameter. An integral for n parameters then 
appears as follows: 

√ …
	 	

	 ⋯
…	

, ,… 	 5‐28 	
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Finally, a variation in strengths using Weibull statistics must be considered. Recall that in the Weibull 
theory, the probability of failure for the particles in a batch is expressed as follows: 

1 	 5‐29 	

where max is the maximum principal stress in the SiC layer. 

We now consider the case where the maximum stress is a function of a parameter vk that varies with 
some statistical distribution: 
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The failure probability associated with a specific value vk for this parameter is: 

1 	 5‐31 	

The total failure probability for a batch of particles is: 
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where a(vk) is a density function for the parameter vk. 

In the situation where the stress is a function of multiple parameters having normal statistical 
distributions, the total failure probability becomes: 

√ ..
	 . . . … 1

, ...

…	 5‐33 	

Unfortunately, Equation (5-33) cannot be integrated in closed form. The traditional method of 
determining the failure probability with Monte Carlo statistical sampling of the integration variables is a 
means of evaluating this integral. The other approach exercised in PARFUME is a direct numerical 
integration of Equation (5-33). The integration is generally performed at eleven Gaussian quadrature 
points over the range of μi-4Di to μi+4Di for each parameter vi. An odd number of points is used so that an 
integration is always performed at the mean value μi for each parameter, which is essential to achieving 
maximum accuracy in the calculation. 

An exception to the use of a Gaussian distribution to characterize the statistical variation in a 
parameter is in the temperature distribution among particles. The temperature of a fuel pebble, for 
example, is dependent on its radial position in the pebble. The distribution used to represent the radial 
density of particles in a pebble is 3r2/R3, where r is any radial location in the pebble and R is the outside 
radius of the pebble. When integrated over the range of 0 to R, the density sums to 1. 

The full integration method is executed in the code with a set of nested DO loops, one for each 
statistically varying parameter. Each parameter is cycled through its full range of values within its 
respective loop. 
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5.4.2.2 Fast Integration 

The time required to execute the probability calculation of Equation (5-33) depends on how many 
parameters are given a statistical variation. For example, the execution time is just a fraction of a second 
when only one parameter is statistically varied, no matter how small the failure probability. The 
computation time can, though, become inordinately large when a large number of parameters are 
considered. Therefore, an approximation is developed below that can substantially reduce the time 
required to perform the integration with only a minimal loss of accuracy.  

Considering for the moment statistical variations in four parameters, Equation (5-33) can be 
expressed as the following integral: 

, , ,
√

	 	 	 ∆ ⁄ ∆ ∆ ∆ ⁄ 	 	

1
∆ ,∆ ,∆ ,∆

∆ ∆ ∆ ∆ 	 5‐34 	

or in basic form: 

, , , 	 	 	 ∆ , ∆ , ∆ , ∆ ∆ ∆ ∆ ∆ 	 5‐35 	

where vi is the variation in parameter i from its mean value i. Additionally, the subscript 1,2,3,4 on the 
integral I indicates that the integral entails variations in the parameters 1, 2, 3, and 4. 

The integrand f(v1,v2,v3v4) can be expanded into a Taylor series having the following form: 

∆ , ∆ , ∆ , ∆ 0,0,0,0 1 ∑ 	∑ ∆ ∑ 	∑ 	 ∑ 	 ∑ ∆ ∆

∑ 	∑ 	∑ 	 ∑ 	 ∑ 	 ∑ ∆ ∆ ∆

∑ 	∑ 	∑ 	 ∑ ∆ ∆ ∆ ∆ 																																			 	  (5-36) 

The coefficients in this series (aip, bijpq, cijkpqr, and dijkl) are derivatives of the function f with respect to 
the parameters vi . The error that would be incurred in dropping some of the summations in this series 
may be small, depending on the degree of coupling between the parameters vi. The maximum stress 
g(v1,v2,v3,v4) can similarly be expanded into a Taylor series. A study of the stresses in the coating 
layers has revealed that g can be well approximated by carrying only terms involving variations in two or 
fewer parameters. In this case, summations in the series involving variations in three or more parameters 
can reasonably be neglected. Because the integrand f is strongly a function of the stress g, it can be 
expected that summations in its series involving variations in three or more parameters can be neglected 
as well. 

Prior to eliminating the summations, the following relations can be established from Equations (5-35) 
and (5-36): 

0,0,0,0 1
, , ,

	 	 5‐37 	

1 ∑ ∆ ∆ 	 5‐38 	

, 1 ∑ 	 	 ∑ ∆ ∆ 	 	 ∑ 	 ∑ ∆ ∆ ∆ ∆ 5‐39 	

or 
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, 	 	 ∑ 	 ∑ ∆ ∆ ∆ ∆ 	 5‐40 	

Substituting Equation (5-36) into Equation (5-35), neglecting all summations involving more than 
two parametric variations, and utilizing the relations of Equations (5-37), (5-38), and (5-39), the failure 
probability integral becomes: 

, , , ∑ 4 ∑ 	 ∑ , 	 5‐41 	

 

where p<q and only those parameters having a Δν that deviates from zero are shown in subscripts. On 
simplification, 

, , , 3 2∑ ∑ 	∑ , 	 5‐42 	

For the more general case of N variables of integration, Equation (5-41) becomes: 

, ,…, ∑ ∑ 	 ∑ , 	 5‐43 	

which is simplified to: 

, ,…, 2 ∑ ∑ 	∑ , 	 5‐44 	

where p<q. This resolves the multiple integral (over N variables) into a number of subintegrals that each 
require integration over two or fewer variables. 

There may be some concern that the error associated with neglecting terms involving three or more 
parametric variations in the Taylor series for f may become significant if a large number of statistically 
varying parameters are considered. If such error becomes significant, Equation (5-44) can be modified to 
include the three-level summations [those involving three parametric variations in Equation (5-36)]. To 
accomplish this, the following relation is needed to complement Equations (5-37) through (5-40): 

, , ∑ ∑ 	 ∑ ,

		 	 	 	 ∑ 	 ∑ 	 ∑ ∆ ∆ ∆ ∆ ∆ ∆ 	 5‐45 	

Following the same process as before, this leads to the following expression for the multiple integral 
involving N variables: 

, ,…, ∑ 3 ∑ 	∑ ,

∑ 	∑ 	 ∑ , , 																 	 	 5‐46 	

In this case, the full integral is broken into subintegrals that each require integration over three or 
fewer variables. It is noted that the approximation equations, Equations (5-44) and (5-46), would apply to 
essentially any multiple integration, not just the failure probability integral for TRISO-coated fuel 
particles. The accuracy in any case is dependent upon the degree of coupling among the integration 
variables. The time required to perform the integration using either of Equations (5-44) or (5-46) relative 
to the full integration can be measured in terms of the number of integration points required for each. It 
has been found that the integrations for a fuel particle can generally be carried out to a high degree of 
accuracy in PARFUME using 11 integration points over the range of each statistically varying parameter. 
The number of integration points n needed to perform the full integration of Equation (5-33), then, is: 

11 	 5‐47 	
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Resolving the integral into subintegrals up to level two, as in Equation (5-44), reduces the number of 
integration points to: 

1 11 11 	 5‐48 	

whereas the use of Equation (5-46) requires the following number of integration points: 

1 11 11 11 	 5‐49 	

The full integration method is executed in the code with a set of nested DO loops, one for each 
statistically varying parameter. Each parameter is cycled through its full range of values within its 
respective loop. The two-level method is executed with two nested loops. These two loops execute 
subintegrals involving all possible combinations of parameters taken two at a time [the third term on the 
right-hand side of Equation (5-44)]. They are also used to execute all subintegrals involving variations in 
one or no parameters [the second and first terms of Equation (5-44) respectively]. 

Table 5-1 summarizes the number of integration points required for the full, 2-level, and 3-level 
integration methods for values of N up to 12. It also shows ratios between the number of integration 
points required for each method, which are a direct measure of the time saved in using the 2-level and 3-
level methods. For example, PARFUME would execute a 2-level integration in approximately 
1/(4.67×106) the time required to execute the full integration when 10 variables are considered. While the 
3-level integration method could be implemented if needed, it is not currently employed in PARFUME. 

Table 5-1. Number of Integration Points Required for the Three Methods. 

Number of 
Variables 

Number of Integration Points Ratios Between Integration Points 

Full Two-level Three-level Full/Two Full/Three Three/Two 

2 121 144 144 0.840 0.840 1 

3 1331 397 1728 3.353 0.770 4.353 

4 14641 771 6095 18.99 2.402 7.905 

5 161051 1266 14576 127.2 11.05 11.51 

6 1.772E+06 1882 28502 941.3 62.16 15.14 

7 1.949E+07 2619 49204 7441 396.0 18.79 

8 2.144E+08 3477 78013 61651 2748 22.44 

9 2.358E+09 4456 116260 529162 20282 26.09 

10 2.594E+10 5556 165276 4.67E+06 156934 29.75 

11 2.853E+11 6777 226392 4.21E+07 1.26E+06 33.41 

12 3.138E+12 8119 300939 3.87E+08 1.04E+07 37.07 
 

5.5 Resolution of Failure Probabilities in the Integration Method 

5.5.1 Resolution Process 

The integration method is implemented in PARFUME in such a manner that in principle it produces 
the same failure probability as calculated by the Monte Carlo method. This is done by integrating over a 
parameter space consisting of those parameters v that exhibit a statistical variation about a mean value. 
For each differential volume element (of parameter space), PARFUME solves incrementally for stresses 
in a particle from the beginning to the end of irradiation. It then determines a differential particle failure 
probability for each of several failure modes (IPyC cracking, partial debonding, internal pressure, and the 
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amoeba effect) and adds this to a cumulative probability for each mode. If a failure probability at the end 
of a time increment exceeds the accumulated probability at the beginning of the increment, the cumulative 
probability for the volume element is increased accordingly. 

To determine the probability that particles will fail due to IPyC cracking, the code first determines the 
probability that cracking of the IPyC will occur. It then determines the probability that the SiC layer of a 
cracked particle will fail due to the presence of the crack. The product of these probabilities then gives a 
probability for particle failure due to IPyC cracking. The probability that particles will fail due to partial 
debonding of the IPyC layer is likewise determined by first calculating the probability debonding occurs, 
then determining the probability that a debonded particle will fail. A complication in these calculations is 
that there are times when IPyC cracking or IPyC debonding would occur in the same particle, introducing 
overlap in the probabilities of IPyC cracking and IPyC debonding. To develop an appropriate split 
between the probabilities of IPyC cracking and IPyC debonding, the code uses the basic process described 
below. It determines maximum values for the IPyC hoop stress and the radial stress at the interface 
between IPyC and SiC layers occurring throughout irradiation. It uses the maximum IPyC hoop stress in 
Equation (5-9) to determine the probability (within a differential volume element of the parameter space) 
that the IPyC would crack, where max, ms, and m are now maximum stress, Weibull mean strength, and 
Weibull modulus values for the IPyC layer. Because the bond strength is currently treated in PARFUME 
as having a normal statistical distribution, the code uses Equation (5-27) to determine the probability that 
the IPyC layer would debond from the SiC, where g is now the maximum radial stress at the interface and 
s is the mean bond strength. 

Having determined probabilities that a particle within the differential volume element would crack 
(Pa) or debond (Pb), the program now determines what fraction of particles within the volume element 
will crack (a), debond (b), or do neither (c). Two conditions that a, b, and c must meet are: 

1	 5‐50 	

	 5‐51 	

A third condition comes from recognizing that the probability that a particle neither cracks nor 
debonds (Pc) is: 

1 1 	 5‐52 	

A particle that would crack may also be a particle that would debond. However, a particle that would 
do neither has no such overlap. Hence, 

	 5‐53 	

Substituting Equations (5-51), (5-52) and (5-53) into Equation (5-50) gives: 

1 	 5‐54 	

The fractions a and b are calculated above as if the values for the quantities are developed in a single 
time step. Since PARFUME solves through irradiation in time increments, the process described above 
has to be modified accordingly. Within a time increment, the probabilities for cracking and debonding 
increase incrementally by Pa and Pb, respectively, resulting in corresponding increases in the fractions 
a and b of a and b. Then Equations (5-50) and (5-51) are modified as follows: 

∆ ∆ 1	 5‐55 	
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∆
∆

∆
∆ 	 5‐56 	

where a and b are the crack and debond fractions at the beginning of the increment. Equations (5-52) and 
(5-53) remain unchanged, and the probabilities in these equations are those occurring at the end of the 
time increment. Substituting Equations (5-52), (5-53), and (5-55) into Equation (5-56) results in: 

∆
∆

∆ ∆
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The incremental fractions a and b are then added to a and b, respectively, to produce new failure 
fractions at the end of the increment. 

Once the fractions a, b, and c are determined for the volume element, the program computes a 
differential failure probability for each of three failure mechanisms, i.e., IPyC cracking, IPyC debonding, 
and internal gas pressure loading. To do this, it first calculates the maximum stress in the SiC layer for 
each of these mechanisms in a particle corresponding to the volume element. For IPyC cracking or 
debonding, this is done using the statistical methodology described in Section 5.2. For internal pressure 
loading, the maximum stress in the SiC layer for a spherical particle is calculated using the solution of 
Section 4. However, if asphericity in the particles is considered, then the maximum SiC stress due to 
internal pressure is calculated using the methodology described in Section 5.3.2.3. Asphericity can be 
treated as a statistical parameter, in which case the aspect ratio becomes one of the parameters in 
Equations (5-12) or (5-13). 

For each of the three failure mechanisms, the program then applies the maximum SiC stress in the 
integrand of Equation (5-33) to calculate a differential failure probability. It applies the factors a and b to 
the probabilities for IPyC cracking and debonding, respectively. It applies the following factor to the 
failure probability for internal pressure loading: 

	 5‐58 	

where, 

maxa  = maximum principal stress in the SiC layer of a particle having a cracked IPyC (MPa) 

msa  = mean strength for the SiC layer of a particle having a cracked IPyC (MPa) 

maxb  = maximum principal stress in the SiC layer of a particle having a partially debonded IPyC 
  (MPa) 

msb  = mean strength for the SiC layer of a particle having a partially debonded IPyC (MPa) 

M  = Weibull modulus for the SiC 

The second and third terms in this factor allow a particle that survives either IPyC cracking or 
debonding to subsequently fail due to internal pressure loading. Finally, PARFUME accumulates total 
failure probabilities for each of the three failure modes utilizing Equation (5-33). 

If failure due to the amoeba effect is found to occur in a differential volume element during any time 
increment, then 100% of the differential failure probability for the element is attributed to the amoeba 
effect for that increment. 
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5.5.2 Accumulation of Failure Probabilities Through Time 

In executing the integration method, PARFUME accumulates a failure probability for each type of 
failure mechanism considered (IPyC cracking, failure of the SiC due to IPyC cracking, etc.). In doing this, 
it calculates an incremental failure probability for each time increment in the analysis of each particle. 
The incremental probability for a time increment in a particle is determined by subtracting the probability 
for that failure mechanism at the beginning of the increment from the probability at the end of the 
increment. The incremental probability for that time increment for that particle is weighted by the 
appropriate probability density functions for that particle, then is added to a cumulative probability for 
that time increment. At the end of the integration, then, each time increment has a cumulative failure 
probability for that failure mechanism. The cumulative failure probabilities for all increments up to a time 
ti are then summed to produce a total failure probability at time ti. 

If failure due to the amoeba effect is found to occur in the analysis of a particle during any time 
increment, then the incremental probability for that increment is set to one and is attributed fully to the 
amoeba effect. This incremental probability is weighted by the probability density functions for that 
particle, then is added to the cumulative failure probability due to the amoeba effect for that time 
increment. 

Figure 5-3 shows a time history calculated for a representative experiment. The failure probability 
reaches 2.5×10-5 early during irradiation due to cracking of the IPyC, then levels off for a period of time. 
After the neutron fluence reaches 3×1025 n/m2 (En > 0.18 MeV), particles progressively fail due to the 
buildup of internal pressure until the failure probability reaches 1.8×10-2 at the end of irradiation. 

 

Figure 5-3. Calculated failure probability time history. 

5.6 Linking Particle Failures with the Diffusion Calculations 

5.6.1 Monte Carlo 

When the Monte Carlo approach is used in the PARFUME program, it is a rather straightforward 
process to link particle failures to the diffusion calculations. For any sampled particle, normal diffusion is 
assumed to occur through intact particle layers unless the failure of a coating layer occurs. The strengths 
of the three coating layers are randomly sampled for each particle, so these are known quantities for each 
particle analyzed. Additionally, the specific location of the particle within the fuel matrix is known, since 
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this is also determined in the sampling process. The cracking of a pyrocarbon layer or failure of the SiC 
layer of a particle occurs if the stress in that layer exceeds its strength. Failures are then determined 
according to the process described in Section 5.4.1. Since the location and timing of any coating layer 
failure becomes known at the moment it occurs during the solution, diffusivities for the coating layers are 
immediately set to a high diffusivity (10-6) to mimic a failed layer and the source term at that location in 
the fuel matrix is also modified to reflect the failure. The calculated diffusion for all sampled particles is 
accumulated into a sum that represents the entire fuel matrix. 

5.6.2 Full Numerical Integration 

When the numerical integration method is used to calculate failure probabilities, Equation (5-33) 
must be modified to enable linking particle failures to the diffusion calculations. With each evaluation of 
the integrand in Equation (5-33), values are established for all of the integration parameters. This set of 
parameters is used to calculate a stress history for a particle having this set of parameters. While the 
integration process according to Equation (5-33) produces an incremental failure probability associated 
with that set of parameters and the resulting stress history, it does not delineate the time at which failures 
occur. This timing is needed, though, to correctly link the failures to the diffusion calculation. To make 
this link, specific values must be established for the strengths of the coating layers so that the time at 
which the stress reaches the layer strength (i.e., failure occurs) can be determined. This is achieved by 
differentiating the expression for failure probability [within brackets on the right-hand side of Equation 
(5-33)] with respect to the stress s and integrating from 0 to the stress level g(vj,vk, ….). This adds another 
variable to the integral as follows: 

	 …
…, ,…

… 	 5‐59 	

where 

√ …
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As with Equation (5-27) the stress s within the integral of Equation (5-59) becomes the strength 
variable for the coating layer, except that the strength has a Weibull distribution rather than a Gauss 
distribution. Integrating the strength variable over the range of 0 to g requires dividing this integration 
region into intervals. The strength value occurring at the midpoint of an interval represents the strength 
for that interval. Thus, in addition to the set of values for all other parameters we now have a specific 
value for the coating layer strength for each evaluation of the integrand of Equation (5-59). This enables a 
determination of the time at which a coating layer failure occurs. The failure probability density 
associated with an interval is obtained by antidifferentiation of the bracketed quantity in the integrand of 
Equation (5-59) and application of integration limits at the left (L) and right (R) ends of the interval, 
which gives: 

	 5‐61 	

This density must be applied to the fission product diffusion calculation for the particle represented 
by the set of parameters under consideration (including coating layer strength) to properly weight the 
diffusion calculation. If the coating layer strength for a particle is greater than g(vj,vk, ….), then the 
density 

, ,…

	 5‐62 	
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must be applied to the diffusion calculation for a particle where the coating layer does not fail. The 
density of Equation (5-62) is the probability of survival for the coating layer. These densities are applied 
in addition to the appropriate densities for the other integration variables. 

The discussion above demonstrates the process of resolving the Weibull expression for failure 
probability into a strength distribution for a coating layer that can then be used to establish the timing of 
coating layer failures. Since fission product diffusion is affected by failure in any of the three coating 
layers, this process must be exercised for all three layers. Thus, the analysis of fission product diffusion 
using the integration scheme adds three integration variables to the overall integral. 

5.6.3 Fast Numerical Integration 

As stated above, incorporating particle failures into the diffusion calculations with the full integration 
method entails the addition of three integration loops, which significantly increases the computational 
time required to perform the integration. Therefore, the fast integration approach has also been adapted to 
calculating failure probabilities when diffusion calculations are performed. The method currently used in 
PARFUME when diffusion calculations are performed with fast integration is to add two DO loops that 
are devoted specifically to IPyC and SiC strength variables. This assures that subintegrals are evaluated 
that entail variations in two non-strength parameters in conjunction with these strength variables. The 
OPyC strength variable is treated in the original two loops along with the other statistically varying 
parameters. OPyC failures generally occur much less frequently than IPyC failures, so need not be 
captured to the same level of accuracy. With this approach, subintegrals are evaluated that entail 
variations in one non-strength parameter in conjunction with the OPyC strength variable. 

A fourth strength variable considered in PARFUME is the IPyC/SiC bond strength. Unlike the IPyC, 
SiC, and OPyC strength variables, the bond strength is treated with a Gaussian distribution rather than a 
Weibull distribution. This is done because there is not sufficient bond strength data to identify the 
parameters of a Weibull distribution or to demonstrate that a Weibull distribution is applicable. In fact, 
users may often elect to give the same value of bond strength to all particles in a batch rather than treat it 
with a statistical distribution. When the bond strength is given a statistical distribution, PARFUME treats 
it as an integration variable whether or not a diffusion calculation is performed. This is because a 
Gaussian distribution, unlike a Weibull distribution, has to be integrated numerically. 

As with the other strength variables, the integration region for bond strength is divided into uniformly 
spaced intervals up to the stress level g(vj,vk,…). In this case g(vj,vk,…) is the maximum radial 
(contact) stress between the IPyC and SiC layers that occurs anytime in the irradiation history. The bond 
will fail for all of these intervals at some time during irradiation. The final integration interval extends 
from g(vj,vk,…) to infinity, and a particle having a bond strength anywhere in this interval will not 
debond during irradiation. As with the OPyC strength, the bond strength is treated along with the non-
strength variables in the first two DO loops of the fast integration method. This saves significantly in the 
execution time for the code, and has been shown to produce accurate results in determining probabilities 
of debonding and failure of the SiC due to debonding. 
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6. Fission Product Diffusion Models 
Predicting fission product transport by diffusion is necessary for reactor safety and source term 

assessments. PARFUME allows simulation of fission product (FP) transport from individual TRISO-
coated fuel particles to the surrounding graphite and from the surrounding graphite to a release from the 
fuel element. These capabilities are based on portions of existing coding extracted from the Tritium 
Migration Analysis Program, TMAP440,41 and adapted to run within PARFUME.  

6.1 TMAP 
TMAP4, a finite difference based code, was originally developed to assist in evaluation of tritium 

losses from fusion reactor systems during normal and accident conditions. However, it became evident 
that TMAP4 has application to a much wider variety of problems, including fuel particle analysis. 
TMAP4 incorporates a one-dimensional diffusion capability that predicts the thermal response of 
structures (i.e., fuel particles), and solves equations for gas movement through surfaces (layer interfaces) 
and in bulk materials (i.e., layers). Specifically TMAP4 calculates: 

 Movement of species across structure surfaces, governed by dissociation/recombination or by a 
solution law, such as Sieverts’ or Henry’s Law. 

 Movement by Fick’s diffusion law in the bulk of a structure. 

 Thermal response of structures to applied heat or boundary temperature loading conditions. 

 Chemical reactions within volumes. 

 Convective flow between volumes. 

Note that TMAP4 was developed for a plate geometry. The corresponding models to simulate 
movement of FP species across material layer interfaces and through bulk materials was extracted from 
TMAP4 and modified for use in PARFUME. In addition, those models were modified within PARFUME 
to treat diffusion within cylindrical and spherical coordinate systems (associated with prismatic and 
pebble bed reactor geometries).  

Similar to previously discussed thermal analyses (see Section 3), both “micro” and “macro” diffusion 
analyses are performed. In this case, FP transport first involves diffusion calculations from individual fuel 
particles (or the “micro” analysis). Results from each fuel particle then serve as time- and position-
dependent FP “sources” for the subsequent fuel element transport analysis (or the “macro” analysis). 
Details regarding the implementation of fuel particle and fuel element FP transport models in PARFUME 
are provided in Sections 6.2 and 6.3, respectively. 

6.2 Micro Solution 
FP transport for fuel particles, or the micro solution, is based on a model with five different materials 

(the kernel, buffer, IPyC, SiC, and OPyC). It is assumed that FPs flow without resistance through the 
Buffer-IPyC gap, if one develops during irradiation. Nodalization of the five remaining materials is 
handled automatically within the code. Specifically, a node is placed on the inner and outer surface of 
each material layer. Each layer is then divided into a number of elements of uniform thickness, where the 
thickness is as close to 5 m as possible. Interior nodes are then placed at the center of each element. This 
nodalization scheme is established at time = 0 for each particle calculation and dimensions are based on 
user input plus the statistical variations that may be considered for each particle. There are no changes in 
nodalization corresponding with changes in particle geometry that may develop during irradiation. 

The model for FP diffusion in plane geometry was derived from the general equation for the 
conservation of atoms. Specifically, the change in the atom concentration (of any specie of interest) can 
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be determined through the application of an atom balance (for the specie). The corresponding equation is 
given by: 

	 6‐1 	

The diffusive atom flux (for any specie of interest) is 

	 6‐2 	

The required derivatives for the numerical solution of Equation (6-1) are based on a space-centered, 
implicit difference approximation for the nodalization scheme shown in Figure 6-1. Specifically, 
Equations (6-1) and (6-2) can be combined to give 

 

Figure 6-1. Finite difference notation used in the numerical diffusion model. 

∆ ∆ ∆ ∆ ∆ ∆

  (6-3) 

where 

x is the spatial coordinate (m), 

and the ‘o’ superscript refers to results from the previous time step. 

It should be noted that current time step concentrations (Ci-1, Ci, and Ci+1) are the only unknowns in 
Equation (6-3). As such, the equation can easily be rewritten in tridiagonal form by collecting terms 
relative to the unknown concentrations. A series of such equations leads to a tridiagonal matrix, which is 
solved via Gaussian elimination within PARFUME. 

Extensions of the existing numerical model were needed to also allow simulation of fission product 
diffusion in both cylindrical and spherical coordinates. The spherical coordinate extension should increase 
fidelity when modeling TRISO-coated fuel particles and pebble bed reactors. The cylindrical coordinate 
extension should increase fidelity when modeling prismatic reactors. 

In cylindrical coordinates, Equations (6-1) and (6-3) become: 

	 6‐4 	

and 
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∆ ∆ ∆ ∆ ∆ ∆

  (6-5) 

where r is the spatial coordinate (m). 

In spherical coordinates, Equations (6-1) and (6-3) become: 

	 6‐6 	

and 

∆ ∆ ∆ ∆ ∆ ∆

		 6‐7 	

A	simplification	is	evident	through	examination	of	Equations	 6‐3 ,	 6‐5 ,	and	 6‐7 .	Specifically,	if	x	
is	taken	to	be	a	general	spatial	variable,	the	equations	can	be	combined	to	give:	

∆ ∆ ∆ ∆ ∆ ∆

  (6-8) 

where 

n (the spatial exponent) = 0 for a plane geometry 

 = 1 for a cylindrical geometry 

 = 2 for a spherical geometry 

In PARFUME, user input provides all of the information needed to automatically assign values for 
the spatial exponent n. Specifically, n is always set equal to 2 when simulating diffusion through 
TRISO-coated fuel particles. Diffusion through the fuel matrix corresponds with the reactor type, which is 
a required user input. Currently supported options include ‘PEBBLEBED’, resulting in n = 2; 
‘PRISMATIC’ and CYLINDRICAL, resulting in n = 1; and ‘PLANEGEOM’, resulting in n = 0. 

The radial position (within the fuel element) of the fuel particle being analyzed is determined at the 
beginning of each particle FP transport simulation. This ultimately allows development of a position 
dependent FP “source” to be used in fuel element transport analyses. During each time step throughout 
the particle simulation, calculated release fractions are used with the incremental FP yield to assign the 
initial deposition of FPs from the analyzed particle into the fuel element. FP contamination is assumed to 
begin diffusion from the outer edge of the buffer. 

FP transport calculations assume a “non-flow” condition at the fuel particle center (due to symmetry) 
and a fixed concentration of FPs of “0” on the fuel particle outer surface (i.e., the OPyC outer surface). 
Use of a fixed outer surface concentration (of essentially any arbitrary value) is recommended to 
determine the net integrated flow of FPs into or out of a material segment. Calculation of the net 
integrated flow of FPs is needed as the “source” input for subsequent fuel element transport analyses. 
Although trapping models, used to account for species trapping due to microstructure irregularities, are 
implemented in PARFUME, current calculations use diffusivities that effectively combine all transport 
processes for analysis using a simplified diffusion approach. 
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FP transport calculations are first completed for “nominal” fuel particles (i.e., those fuel particles that 
normally remain intact) to establish a “baseline” for the FP “source” used in fuel element transport 
analyses. Subsequent calculations for all other fuel particles are then completed to add the effects of 
particle failures to the “baseline”. Specifically, provisions are included to allow incremental failures of the 
three outer most layers (i.e., the IPyC, SiC, and OPyC). Diffusivities are increased to an arbitrarily large 
value (currently 1×10-6) in any layer that has been predicted to fail. FP transport from each failed particle 
that is above the “baseline” is then added to complete the time- and position-dependent “source” for FP 
transport from fuel elements. 

6.3 Macro Solution 
Fuel element FP transport, or the macro solution, is based on a model with two different materials: the 

graphite containing fuel particles and the surrounding graphite without fuel particles. User input defines 
the dimensions and the number of nodes in each. As previously indicated, PARFUME thermal models 
calculate time-dependent temperatures for the nodes based on user-specified boundary conditions and the 
total particle heat load. 

The time- and position-dependent FP “source” established during fuel particle analyses is augmented 
with FP contributions due to uranium contamination. Specifically, uranium contamination (as specified 
through user input) is initially assumed to be uniformly distributed on the outer surface of OPyC layer 
throughout the fueled region of the fuel element model. Addition of FPs to the fuel particle FP “source” 
are based on the level of contamination, the FP yield, and the calculated release fraction. 

Using Equation (6-8), FP transport calculations then proceed assuming a “non-flow” condition of FPs 
at the fuel element centerline (due to symmetry) and a fixed concentration of FPs of “0” on the fuel 
element outer surface (i.e., the outer surface of the unfueled graphite). Use of a fixed outer surface 
concentration (of essentially any arbitrary value) is the approach recommended to determine the net 
integrated flow of FPs into or out of a material segment. Calculation of the net integrated flow of FPs is 
needed to quantify the fuel element FP release. The calculations use diffusivities that effectively combine 
all transport processes for analysis using a simplified diffusion approach. 

6.4 R/B 
A model accounting for release of short-lived fission product gases from failed particles and from 

uranium contamination in the fuel matrix material is incorporated into PARFUME. This correlation 
calculates release rate to birth rate (R/B) ratios for several prominent fission product nuclides. Also based 
upon the Booth equivalent sphere gas release model42, this correlation uses different reduced diffusion 
coefficients for release from failed particles43 and from uranium contamination.45 The total R/B is 
calculated by: 

/ 	 / / 	 6‐9 	

The contamination portion (R/Bcont) is calculated in PARFUME using equation 6-10): 

/ 	 	 6‐10 	

where  Ucont = the fraction of free uranium in the matrix 

Xr1  = (/D1’)1/2 

 = decay constant of isotope i (s-1) 

3 10 . /    for krypton 

1 10 . /   for xenon 
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	      for Xr1 < 10 

Hy1  = 1.0        for Xr1 ≥ 10 

R = gas constant (8.314 J/(mol-K)) 

T = matrix temperature (K) 

Similarly, the failure portion (R/Bfail) is calculated by: 

/ 	 	 6‐11 	

where  Pf = the fraction of failed particles 

Xr2 = (/D2’)1/2 

 = decay constant of isotope i (s-1) 

10   

	 	 7.97 1.92 10 /  for Tk < 1173 K 
	 	 2.60 8.22 10 /  for Tk ≥ 1173 K 

	      for XR2 < 10 

Hy1  = 1.0        for XR2 ≥10 
dk   = kernel diameter (mm) 
Tk  = kernel temperature (K) 

The total R/B is then calculated using Equation 6-9 for the minimum, average, and maximum kernel 
temperature.  
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7. Material Properties 
Material properties are needed to support the three primary models contained in the PARFUME code, 

i.e. the mechanical, thermal, and diffusion models. A discussion of each model including capabilities and 
limitations is included below. For a complete assessment of the impacts these material properties have 
during the modeling of TRISO fuel particles in PARFUME, see Reference 51 

7.1 Mechanical 
The mechanical properties used in the stress analysis of fuel particles in PARFUME were obtained 

from a report compiled by the CEGA Corporation25. These properties include elastic moduli and 
Poisson’s ratios, the creep coefficient and Poisson’s ratio in creep for the PyC layers, swelling strain rate 
data for the PyC layers, Weibull statistical parameters, and coefficients of thermal expansion. With the 
exception of the swelling strain data, the material properties are incorporated into PARFUME with a 
straightforward application of equations given in Reference 25. 

A linear viscoelastic material model and Weibull statistical strength theory are used to predict 
material behavior and failure strengths for the buffer layer, PyC layers, and SiC layer. The strain 
components modeled include thermal, elastic, irradiation-induced swelling, and irradiation-induced 
steady-state creep. 

7.1.1 Assumptions and Approximations 

Due to uncertainties or incompleteness in the material data, several assumptions and approximations 
were required to develop the material properties25. Additionally, the majority of the material properties 
were obtained from strip samples (i.e., flat geometry). Though the coating layers in the fuel particle have 
spherical geometry, it is assumed that these material properties of PyC and SiC are representative. 
Additional details, related to mechanical properties, are presented here: 

 In general, application of the material models is limited to the range of 0.1 to 3.96×1025 n/m2  (E > 
0.18 MeV) for fast neutron fluence and 600° to 1300°C for irradiation temperature. Reactor operating 
temperatures below 600° and above 1300°C along with the range of accident temperatures between 
1600 to 1800°C cannot currently be fully covered due to a lack of available data. 

 The densities of the dense structural PyC and the porous PyC are limited to 1.8 to 2.0 Mg/m3 and 
approximately 0.9 to 1.1 Mg/m3, respectively; the density of SiC is at least 3.18 Mg/m3. 

 Due to the scarcity of material data, it is assumed in the material models that the effects of several 
parameters (i.e., temperature, fluence, density) are mutually independent and their combined effect 
can be obtained by multiplying them together. For example, the modulus of elasticity for dense PyC 
is approximated as a product of several effects as shown in Equation (7-1). 

 Irradiation-induced creep in the pyrocarbon layers is treated as secondary creep, i.e., the creep strain 
rate is proportional to the level of stress in the pyrocarbon. The creep coefficient increases 
significantly with increases in the irradiation temperature. 

 Thermal expansion of the pyrocarbons is anisotropic, and is a function of the Bacon Anisotropy 
Factor (BAF) and temperature. 

 Swelling in the pyrocarbon layers is anisotropic and a function of four variables, i.e., fluence level, 
pyrocarbon density, degree of anisotropy (as measured by BAF), and irradiation temperature. The 
magnitude of the shrinkage increases as BAF increases or as the irradiation temperature increases. 

 The SiC layer has an elastic modulus (stiffness) that is an order of magnitude higher than that for the 
pyrocarbons. 
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 The dependence of Poisson’s ratio, v, (for the PyC layers) on density, crystallite size, temperature, 
and fluence is largely unknown; therefore, it is assumed that Poisson’s ratio is independent of these 
parameters. 

 Most available mechanical property test data for PyC correspond to densities of 1.5 Mg/m3 or higher. 
For the buffer layer (porous PyC), which has a density of approximately 1.0 Mg/m3, a large 
extrapolation of the data is required, which may significantly affect its accuracy. 

Extrapolations beyond the validity range are performed by the code and detailed as needed. If no 
detail is provided, the correlations and physical laws are calculated at any given values of the parameters, 
even if these values lie outside of the recommended validity range of the code. 

7.1.2 Modulus of Elasticity 

7.1.2.1 Pyrocarbons (IPyC and OPyC layers) 

As shown in Equation (7-1), the elastic modulus for the PyC layers is applied as a function of four 
variables, i.e., fluence level (ϕ), pyrocarbon density (ρ), degree of anisotropy as measured by the BAF, 
and irradiation temperature (T). 

, , , , ∙ ∙ ∙ ∙ ∙ 	 7‐1 	

The final equations used in PARFUME for elastic modulus in the tangential and radial directions, 
respectively, are as follows: 

0.384 0.324 0.481 0.519 2.985 0.0662 1 0.23 	
1 0.00015 	 7.2 	

0.384 0.324 1.463 0.463 2.985 0.0662 1 0.23 	
1 0.00015 	 7‐3 	

where  = density (Mg/m3), BAF0 = initial degree of anisotropy, ϕ = fluence (1025 n/m2, E > 0.18 MeV), T 
= temperature – 20 (°C), E01 = E03 = 25.5 GPa. 

In PARFUME, the value for crystallite diameter size, Lc, is set equal to 45 Angstroms, resulting in the 
fourth factor of Equations (7-2) and (7-3) taking on a value equal to 1. 

The moduli of elasticity are bounded at high fluence by their values at 3.96×1025 n/m2. 

7.1.2.2 Pyrocarbon (buffer layer) 

PyC exhibits isotropic characteristics at low density, i.e., densities less than 1.8 g/cm3; this density 
corresponds to a porosity, p, of 20%. In PARFUME, a density of 1 g/cm3 is assumed for the buffer layer, 
which corresponds to a porosity of 56%. The following relation is used to compute modulus of elasticity: 

25.5 0.384 0.324 1 0.23 1 0.00015 	 7‐4 	

where E is in units of psi, and ϕ and T are as above. 

The modulus of elasticity is bounded at high fluence by its value at 3.96×1025 n/m2 (E > 0.18 MeV). 

7.1.2.3 Silicon Carbide (SiC Layer) 

The elastic modulus for SiC is a function of temperature as shown in Table 7-1. 
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Table 7-1. SiC Modulus of Elasticity as a Function of Temperature. 
T(°C)  E (MPa) 

≤ 25  4.276 × 105 
940  3.752 × 105 
1215  3.400 × 105 
≥ 1600  1.979 × 105 

The elastic moduli at temperatures between those listed are determined by linearly interpolating 
between the values given. 

7.1.3 Poisson’s Ratio 

7.1.3.1 Pyrocarbons (IPyC and OPyC layers) 

Since the dependency of Poisson’s ratio () on the various factors which effect material properties is 
unknown, it is assumed that the value for v is a constant 0.33.  

In creep, the Poisson’s ratio (ν) is equal to 0.5. 

7.1.3.2 Pyrocarbon (buffer layer) 

Since the buffer layer behaves as an isotropic material at low density, a value of 0.33 for Poisson’s 
ratio is used in PARFUME. 

7.1.3.3 Silicon Carbide (SiC layer) 

In accordance with recommendations of Reference 25, the Poisson’s ratio for the SiC is set equal to 
0.13 in PARFUME. 

7.1.4 Irradiation-induced Dimensional Change 

7.1.4.1 Pyrocarbons (IPyC and OPyC layers) 

Incorporating the swelling strain physics requires some detailed interpolation to treat the dependence 
on temperature, density, and BAF. This process starts with fourth-order polynomials that define swelling 
strains as a function of fluence at given values of BAF (ranging from 1.0 to 1.3333) and temperature 
(600°C, 1032°C, or 1350°C). The general form of the polynomial is shown in Equation (7-5). 

	 7‐5 	

where the subscript i represents either the radial (r) or tangential (t) component of strain; the isotropic 
component of strain (i.e., εt = εr) is represented as εT. These polynomials are differentiated to give third-
order polynomials for swelling strain rates. Polynomial coefficients are given in Table 7-2 for both the 
radial and tangential directions. 

Table 7-2. Polynomial Coefficients for PyC with  = 1.96 Mg/m3. 

T (°C)  Component  R (note 1)  BAFo  a1  a2  a3  a4 
r  

(note 2) 

1350  radial  0.610  1.2787  3.71620  ‐2.70420  1.17990  ‐0.13910  1.000 

1350  radial  0.630  1.1746  1.20930  ‐0.53861  0.43114  ‐0.05590  1.000 

1350  radial  0.650  1.0769  ‐0.89522  0.80331  ‐0.09009  0.00467  0.999 

1350  radial  0.656  1.0488  ‐1.49640  1.16621  ‐0.30106  0.03475  0.998 

1350  radial  0.662  1.0212  ‐1.54330  0.59804  ‐0.09997  0.00978  0.999 

1350  isotropic  0.667  1.0000  ‐1.42840  ‐0.19563  0.18991  ‐0.02591  0.998 

1350  tangential  0.670  1.0303  ‐2.24680  0.48243  ‐0.07687  0.00464  1.000 

1350  tangential  0.675  1.0769  ‐2.82930  0.76088  ‐0.22314  0.02431  1.000 
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T (°C)  Component  R (note 1)  BAFo  a1  a2  a3  a4 
r  

(note 2) 

1350  tangential  0.680  1.1250  ‐3.25550  0.90423  ‐0.33175  0.04329  0.999 

1350  tangential  0.690  1.2258  ‐4.44780  1.60320  ‐0.58683  0.07458  0.999 

1350  tangential  0.700  1.3333  ‐5.67140  2.41920  ‐0.86155  0.10668  0.999 

1032  radial  0.610  1.2787  ‐0.45900  0.51172  ‐0.03245  ‐0.00142  0.949 

1032  radial  0.630  1.1746  ‐1.18540  0.64995  0.01380  ‐0.01284  0.988 

1032  radial  0.650  1.0769  ‐1.81690  1.10850  ‐0.23868  0.02484  0.997 

1032  radial  0.656  1.0488  ‐2.00470  1.30380  ‐0.37280  0.04538  1.000 

1032  radial  0.662  1.0212  ‐2.07520  1.37845  ‐0.48993  0.06602  1.000 

1032  isotropic  0.667  1.0000  ‐1.52390  0.13048  0.06299  ‐0.01072  1.000 

1032  tangential  0.670  1.0303  ‐1.57590  0.09019  0.05306  ‐0.00815  1.000 

1032  tangential  0.675  1.0769  ‐1.32200  ‐0.51928  0.27603  ‐0.03465  1.000 

1032  tangential  0.680  1.1250  ‐1.18700  ‐0.90635  0.41046  ‐0.05067  1.000 

1032  tangential  0.690  1.2258  ‐0.96963  ‐1.59110  0.64689  ‐0.07682  1.000 

1032  tangential  0.700  1.3333  ‐0.81239  ‐2.20760  0.88496  ‐0.10457  0.999 

600  radial  0.610  1.2787  0.40265  ‐0.16501  0.03676  0.00706  0.999 

600  radial  0.630  1.1746  ‐0.15714  ‐0.14889  0.07546  ‐0.00293  0.985 

600  radial  0.650  1.0769  ‐0.78045  ‐0.02975  0.06655  ‐0.00626  0.994 

600  radial  0.656  1.0488  ‐0.94333  ‐0.03589  0.08184  ‐0.00958  0.996 

600  radial  0.662  1.0212  ‐1.10640  ‐0.03128  0.09184  ‐0.01220  0.998 

600  isotropic  0.667  1.0000  ‐1.24080  0.00175  0.08533  ‐0.01253  0.998 

600  tangential  0.670  1.0303  ‐1.38550  0.05307  0.07620  ‐0.01245  0.999 

600  tangential  0.675  1.0769  ‐1.46790  ‐0.02836  0.12139  ‐0.01948  0.999 

600  tangential  0.680  1.1250  ‐1.64660  0.03928  0.10067  ‐0.01764  0.999 

600  tangential  0.690  1.2258  ‐1.84990  ‐0.09358  0.18119  ‐0.03036  0.999 

600  tangential  0.700  1.3333  ‐2.19190  0.02675  0.15352  ‐0.02972  0.999 

Notes: 
R = orientation parameter giving a measure of anisotropy 
r = statistical coefficient indicating closeness of curve fit to data 

 

Isotropic swelling strain computed using Equation (7-5) is adjusted for other densities by applying a 
scaling factor, up, defined in Equation (7-6). The scaling factor is the ratio of the isotropic strain at a given 
density to the isotropic strain at a density of 1.96 Mg/m3. The values for εT() are obtained from 
Table 7-3. 

/ 1.96	 / 	 7‐6 	

Table 7-3. εT at 1100°C Irradiation Temperature to 3.7×1025 n/m2 (E > 0.18 MeV). 

(g/cm3)  1.0  1.2  1.4  1.5  1.6  1.8  1.9  1.96  2.0 

εT (%)  ‐16.15  ‐13.11  ‐9.98  ‐8.93  ‐6.97  ‐4.42  ‐3.41  ‐2.75  ‐2.33 
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Adjustments for density at other BAF values are made by applying a scaling factor v to the 
difference between the radial and tangential strain components; as defined in Equation (7-7), the scaling 
factor is the ratio of the strain difference at a given density to the strain difference at a density of 1.96 
Mg/m3. The values for (εr – εt)() are obtained from Table 7-4. 

/ 1.96	 / 		 7‐7 	

Table 7-4. εr – εt at 1100°C Irradiation Temperature to 3.7×1025 n/m2 (E > 0.18 MeV). 

(g/cm3)  1.0  1.2  1.4  1.5  1.6  1.8  1.9  1.96  2.0 

εr  ‐ εt (%)  0  0.5  1.1  1.65  2.45  6.305  7.9  9.6  11.1 
 

Using Equations (7-8) and (7-9), the general process used to compute strain is summarized below. 

	 7‐8 	

	 7‐9 	

As shown in Figure 7-1, which was extracted from Reference 25, the radial and tangential 
components of swelling strain at any density straddle the isotropic swelling strain at that density. 

For the density of 1.96 Mg/m3, this relationship can be approximated as follows: 

	 7‐10 	

where εr > εt. The quantity k is determined by solving Equation (7-10) using the polynomial data for the 
standard density,  = 1.96 Mg/m3. The same value of k is then used to make this interpolation at other 
densities. This results in the following expressions for the swelling strain rates at any density: 

	 7‐11 	

	 7‐12 	

If the density is lower than 1.0 Mg/m3, the scaling factor is extrapolated from its values at 1.2 Mg/m3 
and 1.0 Mg/m3. If the density is larger than 2.0 Mg/m3 it is extrapolated from its values at 1.9 Mg/m3 and 
2.0 Mg/m3. If BAF values exceed the maximum values of 1.2787 (radial) and 1.3333 (tangential), the strain 
rates are set to the values calculated at the maximum BAF values. 

These density interpolations are made at the two temperature values (600 and 1032°C or 1032 and 
1350°C) that straddle the temperature under consideration. Then, the final swelling strain rates are 
determined by interpolating between these two temperature values. If the temperature under consideration 
is below 600°C, the strain coefficients are extrapolated from their values at 600 and 1032°C. If it is above 
1350°C, the strain coefficients are extrapolated from their values at 1032 and 1350°C. 

The strain rates are bounded at high fluence by their values at 3.96×1025 n/m2. 
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Figure 7-1. Strain vs Pre-irradiated Density for PyC irradiated at 1100°C to 3.7×1025 n/m2 (E > 0.18 
MeV). 

Reference 25 presents a relationship between BAF and fluence, which indicates that BAF increases 
steadily with fluence. The relationship (shown in Table 7-5) is the ratio between BAF at fluence ϕ and 
BAF at zero fluence and is programmed into the PARFUME code. 

Table 7-5. BAF as a Function of Fluence (E > 0.18 MeV). 

, 1025 n/m2  0.0  1.0  2.0  3.0  3.5  4.0  4.5  ≥5 

BAF/BAF0  1.0000  1.0019  1.0114  1.0219  1.0286  1.0324  1.0362  1.0381 
 

7.1.4.2 Pyrocarbon (buffer layer) 

Similar to the PyC layer, dimensional changes such as swelling are computed using Equation (7-5). 
The coefficients for the equation are obtained from Table 7-2. If the density is lower than 1.0 Mg/m3, the 
scaling factor is extrapolated from its values at 1.2 Mg/m3 and 1.0 Mg/m3. If the density is larger than 2.0 
Mg/m3 is extrapolated from its values at 1.9 Mg/m3 and 2.0 Mg/m3. 

Since the buffer layer is assumed to behave as an isotropic material, the coefficients used correspond 
to a BAFo = 1 associated with the temperatures of 600 or 1350°C. Deformation at other temperatures is 
determined by interpolating between these temperatures. If the temperature under consideration is below 
600°C, the strain coefficients are extrapolated from their values at 600 and 1032°C. If it is above 1350°C, 
the strain coefficients are extrapolated from their values at 1032 and 1350°C. 

The strain rate is bounded at high fluence by its value at 3.96×1025 n/m2 (E > 0.18 MeV). 
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7.1.4.3 Silicon Carbide (SiC layer) 

Irradiation-induced dimensional change for the SiC layer is assumed to be negligible in accordance 
with the recommendation of Reference 25. This has historically not been included in performance models, 
though Reference 25 indicates that there can be situations where it is significant, such as “when either or 
both of the IPyC and OPyC peel away from the SiC layer.” Irradiation-induced swelling of the SiC could 
be readily added to the PARFUME model using the methodology presented in Section 4 if an analysis of 
data, such as in References 25 and 44, indicate a need to do so. 

7.1.5 Weibull Strength Parameters 

The Weibull characteristic strength (o) for the PyC layers is a function of BAF, temperature, and 
fluence. The Weibull modulus for the IPyC is held constant throughout irradiation. Reference 25 indicates 
that the strength of the SiC may be a function of temperature, but that this dependence needs further 
study. The Weibull characteristic strength and modulus for the SiC are therefore currently held constant 
throughout irradiation. 

7.1.5.1 Pyrocarbons (IPyC and OPyC layers) 

The Weibull statistical strength theory is applied in the code according to the following formula: 

1 ⁄	 	 7‐13 	

It is noted that, since compressive stresses do not contribute to failure of a coating layer, only tensile 
stresses are included in the integral above. 

In keeping with recommendations of Reference 25, the Weibull modulus for the pyrocarbon layers is 
not treated as a function of fluence or temperature. A value of 9.5, which corresponds to a density of 1.9 
Mg/m3, is assumed for the modulus. 

The second Weibull parameter, the characteristic strength of the pyrocarbons, is a function of 
anisotropy and is determined from the following equation for room temperature: 

1.5446 141.1 	 7‐14 	

where X = 1.02. The characteristic strength has units of MPa-m3/9.5. 

At other temperatures and non-zero fluence, Equation (7-14) is multiplied by the factor (E0i/E0)1/2 as 
follows: 

/
1 0.23 1 0.00015 / 	 7‐15 	

where 

 = fluence (1025 n/m2, E > 0.18 MeV) 

T = temperature – 20 (°C) 

7.1.5.2 Pyrocarbon (buffer layer) 

Currently, the evaluation of buffer layer failure is not included in PARFUME. 

7.1.5.3 Silicon Carbide (SiC layer) 

The following Weibull parameters are used for the SiC layer in PARFUME: 

m = 6 and o = 9.64 MPa-m3/6 
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7.1.6 Irradiation-induced Creep  

7.1.6.1 Pyrocarbons (IPyC and OPyC layers) 

Irradiation-induced steady state creep is treated as secondary creep with a coefficient that is a function 
of pyrocarbon density and irradiation temperature. Though transient creep could have an effect early in 
irradiation, the parameters needed to model it are not well established. Furthermore, a study of transient 
creep46 showed it to have at most a nominal effect on particle stresses. The steady state creep coefficient 
is obtained from the following equation: 

1 2.38 1.9 2.193 10 4.85 10 4.0147 10 	 7‐16 	

where T = temperature (°C) and KS has units of 10-25 (MPa-n/m2)-1. Note that due to a lack of available 
data, KS is assumed to be independent of fast fluence. Note that the code provides the user with an input 
parameter called CREEPAMP, which is a factor applied to KS that can be used to amplify (or reduce) the 
creep coefficient if desired. 

The correlation for the steady state creep coefficient is valid between 600 and 1350°C. If the 
temperature under consideration is below 600°C, the coefficient is set to its value at 600°C. If it is above 
1350°C, the coefficient is set to its value at 1350°C.	

7.1.6.2 Pyrocarbon (buffer layer) 

Equation (7-16) is used to compute the steady state creep coefficient for the buffer layer using the 
buffer density computed by PARFUME. 

7.1.6.3 Silicon Carbide (SiC layer) 

Irradiation-induced creep in the SiC layer is not computed in PARFUME. 

7.2 Thermal 

7.2.1 Thermal Conductivity 

Functional relationships for the thermal conductivity for PyC and UO2 were obtained from Reference 
47. The relationships are presented below. Due to the lack of published UCO material properties and 
respective correlations, functional relationships for UCO are assumed to be the same as UO2. 

7.2.1.1 Pyrocarbons (IPyC and OPyC layers) 

k	 	4W/m/K	

7.2.1.2 Pyrocarbon (buffer layer) 

k = 0.5 W/m/K 

7.2.1.3 UO2 Fuel 

0.0132 . 	 	 ⁄⁄ 	 	 	 	 	 7‐17 	

for T < 1650°C 

0.0132 . 1.9	 7‐18 	

for T ≥ 1650°C 

7.2.1.4 SiC Layer 

2	 	 ⁄⁄ 	 	 	 	 	 7‐19 	
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7.2.1.5 Matrix 

The correlation used in PARFUME for the matrix thermal conductivity was obtained from Reference 
48 where: 

∙ ∙ ∙ 	 	 7‐20 	

	 1 	 7‐21 	

1 1 	 7‐22 	

	 7‐23 	

	
	

. 	 /
	 7‐24 	

and 

T = temperature in °C and T’ = T – 100°C 

Γ = fast neutron fluence (n/m2, E > 0.18 MeV)/1.52×1025 n/m2 

γ = 0.940 – 0.604(T/1000) 

β = 2.960 – 1.955(T/1000) 

 = 0.043(T/1000) – 0.008(T/1000)8 

	
	 	 	 	 	 	

	 	
  

Note that for A3-27 material (i.e., carbon) heat treated at 1800°C: 

k100 = 47.4 W/mK 

α = 9.7556×10-4 

δ = -6.0360×10-4 

7.2.2 Specific Heat Capacity 

7.2.2.1 Pyrocarbons (IPyC and OPyC layers) 

The specific heat capacity for the IPyC and OPyC is not required in PARFUME since a quasi-steady 
approach is utilized in the heat transfer calculations for fuel particles. 

7.2.2.2 Pyrocarbon (buffer layer) 

The specific heat capacity for the buffer layer is not required in PARFUME since a quasi-steady 
approach is utilized in the heat transfer calculations for fuel particles. 

7.2.2.3 Fuel 

The specific heat capacity for fuel is not required in PARFUME since a quasi-steady approach is 
utilized in the heat transfer calculations for fuel particles. 

7.2.2.4 Matrix 

The specific heat capacity correlation for the fuel element matrix, shown in Equation (7-25) for 
carbon brick was taken from Reference 49. 

1.75 10 0.645 3.14 2.809 0.959 	 7‐25 	
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The units for specific heat capacity are J/(m3K) and T = °C/1000. The maximum allowed value for 
specific heat capacity is 3.54×106 J/(m3-K). 

7.2.3 Thermal Expansion 

7.2.3.1 Pyrocarbons (IPyC and OPyC layers) 

The coefficients of thermal expansion in the radial and tangential directions for the pyrocarbons are 
functions of an orientation parameter R as follows: 

αr = A(-37.5Rr + 30) 

αt = A[36(Rt - 1)2 + 1] 

in units of 10-6/°C, where Rt ≤ 2/3 and Rr ≤ 2/3, and the orientation parameters in the radial and tangential 
directions are related to the BAF as follows: 

Rr = 2/(2 + BAF) 

Rt = 1 – (Rr/2) 

and A is a temperature adjustment factor given by 

A = 1 + 0.11(T – 400)/700 

and T is the temperature of the pyrocarbon layer in °C. 

7.2.3.2 Pyrocarbon (buffer layer) 

The buffer layer utilizes the equations presented in 7.2.3.1. Due to its isotropic behavior, Rr = Rt = R = 
2/3. 

7.2.3.3 Silicon Carbide (SiC Layer) 

The thermal expansivity of SiC has a mean value of 4.9×10-6 per °C for a temperature range between 
22°C and 1000°C; furthermore, it is assumed that thermal expansivity remains constant between 900°C 
and 1300°C. Therefore, a constant value of 4.9×10-6 per °C is used in PARFUME. Note that the presence 
of free carbon in the SiC layer could reduce the thermal expansivity by 40%. 

7.3 Diffusion Coefficients 
Currently PARFUME uses models available in TMAP (The Tritium Migration Analysis Program), a 

finite difference based code, to predict fission product diffusion. TMAP incorporates a one-dimensional 
diffusion capability that predicts the thermal response of structures (i.e., fuel particles), and solves 
equations for gas movement through surfaces (layer interfaces) and in bulk materials (i.e., layers). In 
order to predict the migration of fission products, diffusion coefficients must be determined. 

Diffusion coefficients for all nuclides considered within the PARFUME FP transport models are 
listed in Table 7-6.46 The corresponding diffusivities can be calculated using these coefficients in an 
Arrhenius type equation given by 

	 ∑ , 	 7‐26 	

where 

D0 = the pre-exponential factor (m2/s), 

Q = the activation energy (J/mol), 

R = the gas constant (8.3142 J/mol K), and 

T = temperature (K). 
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These values are based on historical data and may not accurately represent the transport of fission 
products from modern TRISO-coated fuel particles. 

Table 7-6. PARFUME Diffusion Coefficients. 

Material  Nuclide 
D0,1 

(m2/s) 
Q1 

(kJ/mol) 
D0,2 

(m2/s)  Q2 (kJ/mol) 

fuel kernel 
(either UO2 or UCO) 

Ag  6.7E‐09  165  —  — 

Cs  5.6E‐08  209  5.2E‐04  362 

Kr 
(normal operation) 

1.3E‐12  126 
—  — 

—  — 

Kr 
(accident conditions) 

8.8E‐15  54  6.0E‐01  480 

Sr  2.2E‐03  488  —  — 

Buffer 

Ag  1.0E‐08  0  —  — 

Cs  1.0E‐08  0  —  — 

Kr  1.0E‐08  0  —  — 

Sr  1.0E‐08  0  —  — 

PyC 

Ag  5.3E‐09  154  —  — 

Cs  6.3E‐08  222  —  — 

Kr  2.9E‐08  291  2.0E+05  923 

Sr  2.3E‐06  197  —  — 

SiC 

Ag  3.6E‐09  215  —  — 

Csa 
5.5E‐

14*eΓ×1.1/5  125  1.6E‐02  514 

Kr 
(temperature <1626 K) 

8.6E‐10  326 
—  — 

—  — 

Kr 
(temperature >1626 K) 

3.7E+01  657 
—  — 

—  — 

Sr  1.2E‐09  205  1.8E+06  791 

matrix graphite 
(either A3‐3 or A3‐

27) 

Ag  1.6E+00  258  —  — 

Cs  3.6E‐03  189  —  — 

Kr  6.0E‐06  0  —  — 

Sr  1.0E‐02  303  —  — 

a. Note that Γ = fast neutron fluence (×1025 n/m2, E > 0.18 MeV). 
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Appendix A 
 

Supplemental Equations 
Equations for quantities contained in the derivations of Section 4 are: 

 

	 A‐1 	

 

	 A‐2 	

 

	 A‐3 	

 

	 A‐4 	

 

	 A‐5 	

 

	 A‐6 	

 

	 A‐7 	

 

	 A‐8 	

 

	 A‐9 	

 

	 A‐10 	
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	 A‐11 	

 

	 A‐12 	

 

	 A‐13 	

 

	 A‐14 	

 

	 A‐15 	

 

	 A‐16 	

 

, 4 	 A‐17 	

 

	 A‐18 	

 

	 A‐19 	

 

	 A‐20 	

 

	 A‐21 	
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∆

∆

	 A‐22 	

 

	 A‐23 	

 

∆

∆

	 A‐24 	

	

	 A‐25 	

	

	 A‐26 	

	

	 A‐27 	

	

	 A‐28 	

	

	 A‐29 	

 

Thermal expansion in the SiC layer, represented by αSTS, is assumed to be isotropic in this 
Appendix. 

The HSC CO production used in PARFUME is described below: 

 

UO2 

COprod = -1.2364643×103 + 5.2607251×103T - 9.1393608×103T2 + 7.989528×103T3 - 3.2087818×103T4 - 
58.717939T5 + 571.47264T6 – 204.30594T7 + 24.030227T8 - 7.6184271B – 0.38245633B2 + 
8.3354367×10-2B3 - 1.3699269/B   - 0.24016653E + 2.9938239B×T + 5.6249138B/T + 0.77335019T/B 

UCO 
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COprod = -3.4561658×10-3T/B + 0.75324736B/T + 0.59285857B×T + 1.812458×10-2B2 - 1.3944479B + 
2.598048×10-2B/C - 3.947318×10-2C3 - 8.250409×10-2C2 + 9.987982×10-2C - 7.266809×10-2B×C - 
4.24332×10-2E + 10.729249T5 - 84.124089T4 + 2.7252631×102T3 - 4.6673627×102T2 + 4.4483564×102T - 
2.0243801×102 

Where: 

T = Kernel temperature (K) 

B = Burnup (% FIMA) 

E = U-235 Enrichment 

C = Carbon to uranium ration 
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